Wide Binary Weirdness

My last post about the Milky Way was intended to be a brief introduction to our home galaxy in order to motivate the topic of binary stars. There’s too much interesting to say about the Milky Way as a galaxy, so I never got past that. Even now I feel the urge to say more, like with this extended rotation curve that I included in my contribution to the proceedings of IAU 379.

The RAR-based model rotation curve of the Milky Way extrapolated to large radii (note the switch to a logarithmic scale at 20 kpc!) for comparison to the halo stars of Bird et al (2022) and the globular clusters of Watkins et al (2019). The location of the solar system is noted by the red circle.

But instead I want to talk about data for binary stars from the Gaia mission. Gaia has been mapping the positions and proper motions of stars in the local neighborhood with unprecedented accuracy. These can be used to measure distances via trigonometric parallax, and speeds along the sky. The latter once seemed impossible to obtain in numbers with much precision; thanks to Gaia such data now outnumber radial (line of sight) velocities of comparable accuracy from spectra. That is a mind-boggling statement to anyone who has worked in the field; for all of my career (and that of any living astronomer), radial velocities have vastly outnumbered comparably well-measured proper motions. Gaia has flipped that forever-reality upside down in a few short years. It’s third data release was in June of 2022; this provides enough information to identify binary stars, and we’ve had enough time to start (and I do mean start) sorting through the data.

OK, why are binary stars interesting to the missing mass (really the acceleration discrepancy) problem? In principle, they allow us to distinguish between dark matter and modified gravity theories like MOND. If galactic mass discrepancies are caused by a diffuse distribution of dark matter, gravity is normal, and binary stars should orbit each other as Newton predicts, no matter their separation: the dark matter is too diffuse to have an impact on such comparatively tiny scales. If instead the force law changes at some critical scale, then the orbital speeds of widely separated binary pairs that exceed this scale should get a boost relative to the Newtonian case.

The test is easy to visualize for a single binary system. Imagine two stars orbiting one another. When they’re close, they orbits as Newton predicts. This is, after all, how we got Newtonian gravity – as an explanation for Kepler’s Laws or planetary motion. Ours is a lonely star, not a binary, but that makes no difference to gravity: Jupiter (or any other planet) is an adequate stand-in. Newton’s universal law of gravity (with tiny tweaks from Einstein) is valid as far out in the solar system as we’ve been able to probe. For scale, Pluto is about 40 AU out (where Earth, by definition, is 1 AU from the sun).

Let’s start with a pair of stars orbiting at a distance that is comfortably in the Newtonian regime, say with a separation of 40 AU. If we know the mass of the stars, we can calculate what their orbital speed will be. Now imagine gradually separating the stars so they are farther and farther apart. For any new separation s, we can predict what the new orbital speed will be. According to Newton, this will decline in a Keplerian fashion, v ~ 1/√s. This will continue indefinitely if Newton remains forever the law of the land. If instead the force law changes at some critical scale sc, then we would expect to see a change when the separation exceeds that scale. Same binary pair, same mass, but relatively faster speed – a faster speed that on galaxy scales leads to the inference of dark matter. In essence, we want to check if binary stars also have flat rotation curves if we look far enough out.

We have long known that simply changing the force law at some length scale sc does not work. In MOND, the critical scale is an acceleration, a0. This will map to a different sc for binary stars of different masses. For the sun, the critical acceleration scale is reached at sc ≈ 7000 AU ≈ 0.034 parsecs (pc), about a tenth of a light-year. That’s a lot bigger than the solar system (40 AU) but rather smaller than the distance to the next star (1.3 pc = 4.25 light-years). So it is conceivable that there are wide binaries in the solar neighborhood for which this test can be made – pairs of stars with separations large enough to probe the MOND regime without being so far apart that they inevitably get broken up by random interactions with unrelated stars.

Gaia is great for identifying binaries, and space is big. There are thousands of wide binaries within 200 pc of the sun where Gaia can obtain excellent measurements. That’s not a big piece of the galaxy – it is a patch roughly the size of the red circle in the rotation curve plot above – but it is still a heck of a lot of stars. A signal should emerge, and a number of papers have now appeared that attempt this exercise. And ooooo-buddy, am I confused. Frequent readers will have noticed that it has been a long time between posts. There are lots of reasons for this, but a big one is that every time I think I understand what is going on here, another paper appears with a different result.

OK, first, what do we expect? Conventionally, binaries should show Keplerian behavior whatever their separation. Dark matter is not dense enough locally to have any perceptible impact. In MOND, one might expect an effect analogous to the flattening of rotation curves, hence higher velocities than predicted by Newton. And that’s correct, but it isn’t quite that simple.

In MOND, there is the External Field Effect (EFE) in which the acceleration from distant sources can matter to the motion of a local system. This violates the strong but not the weak Equivalence Principle. In MOND, all accelerative tugs matter, whereas conventionally only local effects matter.

This is important here, as we live in a relatively high acceleration neighborhood that is close to a0. The acceleration the sun feels towards the Galactic center is about 1.8 a0. This applies to all the stars in the solar neighborhood, so even if one finds a binary pair that is widely separated enough for the force of one star on another to be less than a0, they both feel the 1.8 a0 of the greater Galaxy. A lot of math intervenes, with the net effect being that the predicted boost over Newton is less than it would have been in the absence of this effect. There is still a boost, but its predicted amplitude is less than one might naively hope.

The location of the solar system along the radial acceleration relation is roughly (gbar, gobs) = (1.2, 1.8) a0. At this acceleration, the effects of MOND are just beginning to appear, and the external field of the Galaxy can affect local binary stars.

One of the first papers to address this is Hernandez et al (2022). They found a boost in speed that looks like MOND but is not MOND. Rather, it is consistent with the larger speed that is predicted by MOND in the absence of the EFE. This implies that the radial acceleration relation depicted above is absolute, and somehow more fundamental than MOND. This would require a new theory that is very similar to MOND but lacks the EFE, which seems necessary in other situations. Weird.

A thorough study has independently been made by Pittordis & Sutherland (2023). I heard a talk by them over Zoom that motivated the previous post to set the stage for this one. They identify a huge sample of over 73,000 wide binaries within 300 pc of the sun. Contrary to Hernandez et al., they find no boost at all. The motions of binaries appear to remain perfectly Keplerian. There is no hint of MOND-like effects. Different.

OK, so that is pretty strong evidence against MOND, as Indranil Banik was describing to me at the IAU meeting in Potsdam, which is why I knew to tune in for the talk by Pittordis. But before I could write this post, yet another paper appeared. This preprint by Kyu-Hyun Chae splits the difference. It finds a clear excess over the Newtonian expectation that is formally highly significant. It is also about right for what is expected in MOND with the EFE, in particular with the AQUAL flavor of MOND developed by Bekenstein & Milgrom (1984).

So we have one estimate that is MOND-like but too much for MOND, one estimate that is straight-laced Newton, and one estimate that is so MOND that it can start to discern flavors of MOND.

I really don’t know what to make of all this. The test is clearly a lot more complicated than I made it sound. One does not get to play God with a single binary pair; one instead has to infer from populations of binaries of different mass stars whether a statistical excess in orbital velocity occurs at wide separations. This is challenging for lots of reasons.

For example, we need to know the mass of each star in each binary. This can be gauged by the mass-luminosity relation – how bright a main sequence star is depends on its mass – but this must be calibrated by binary stars. OK, so, it should be safe to use close binaries that are nowhere near the MOND limit, but it can still be challenging to get this right for completely mundane, traditional astronomical reasons. It remains challenging to confidently infer the properties of impossibly distant physical objects that we can never hope to visit, much less subject to laboratory scrutiny.

Another complication is the orientation and eccentricity of orbits. The plane of the orbit of each binary pair will be inclined to our line of sight so that the velocity we measure is only a portion of the full velocity. We do not have any way to know what the inclination of any one wide binary is; it is hard enough to identify them and get a relative velocity on the plane of the sky. So we have to resort to statistical estimates. The same goes for the eccentricities of the orbits: not all orbits are circles; indeed, most are not. The orbital speed depends on where an object is along its elliptical orbit, as Kepler taught us. So yet again we must make some statistical inference about the distribution of eccentricities. These kinds of estimates are both doable and subject to going badly wrong.

The net effect is that we wind up looking at distributions of relative velocities, and trying to perceive whether there is an excess high-velocity tail over and above the Newtonian expectation. This is far enough from my expertise that I do not feel qualified to judge between the works cited above. It takes time to sort these things out, and hopefully we can all come to agreement on what it is that we’re seeing. Right now, we’re not all seeing eye-to-eye.

There is a whole session devoted to this topic at the upcoming meeting on MOND. The primary protagonists will be there, so hopefully some progress can be made. At least it should be entertaining.

2 thoughts on “Wide Binary Weirdness

Comments are closed.