Can’t be explained by science!

Can’t be explained by science!

This clickbait title is inspired by the clickbait title of a recent story about high redshift galaxies observed by JWST. To speak in the same vernacular:


What they mean, as I’ve discussed many times here, is that it is difficult to explain these observations in LCDM. LCDM does not encompass all of science. Science* predicted exactly this.

This story is one variation on the work of Labbe et al. that has been making the rounds since it appeared in Nature in late February. The concern is that these high redshift galaxies are big and bright. They got too big too soon.

Six high redshift galaxies from the JWST CEERS survey, as reported by Labbe et al. (2023). Not much to look at, but bear in mind that these objects are pushing the edge of the observable universe. By that standard, they are both bright and disarmingly obvious.

The work of Labbe et al. was one of the works informing the first concerns to emerge from JWST. Concerns were also raised about the credibility of those data. Are these galaxies really as massive as claimed, and at such high redshift? Let’s compare before and after publication:

Stellar masses and redshifts of galaxies from Labbe et al. The pink squares are the initial estimates that appeared in their first preprint in July 2022. The black squares with error bars are from the version published in February 2023. The shaded regions represent where galaxies are too massive too early for LCDM. The lighter region is where very few galaxies were expected to exist; the darker region is a hard no.

The results here are mixed. On the one hand, we were right to be concerned about the initial analysis. This was based in part on a ground-based calibration of the telescope before it was launched. That’s not the same as performance on the sky, which is usually a bit worse than in the lab. JWST breaks that mold, as it is actually performing better than expected. That means the bright-looking galaxies aren’t quite as intrinsically bright as was initially thought.

The correct calibration reduces both the masses and the redshifts of these galaxies. The change isn’t subtle: galaxies are less massive (the mass scale is logarithmic!) and at lower redshift than initially thought. Amusingly, only one galaxy is above redshift 9 when the early talking point was big galaxies at z = 10. (There are other credible candidates for that.) Nevertheless, the objects are clearly there, and bright (i.e., massive). They are also early. We like to obsess about redshift, but there is an inverse relation between redshift and time, so there is not much difference in clock time between z = 7 and 10. Redshift 10 is just under 500 million years after the big bang; redshift 7 just under 750 million years. Those are both in the first billion years out of a current age of over thirteen billion years. The universe was still in its infancy for both.

Regardless of your perspective on cosmic time scales, the observed galaxies remain well into LCDM’s danger zone, even with the revised calibration. They are no longer fully in the no-go zone, so I’m sure we’ll see lots of papers explaining how the danger zone isn’t so dangerous after all, and that we should have expected it all along. That’s why it matters more what we predict before an observation than after the answer is known.

*I emphasize science here because one of the reactions I get when I point out that this was predicted is some variation on “That doesn’t count! [because I don’t understand the way it was done.]” And yet, the predictions made and published in advance of the observations keep coming true. It’s almost as if there might be something to this so-called scientific method.

On the one hand, I understand the visceral negative reaction. It is the same reaction I had when MOND first reared its ugly head in my own data for low surface brightness galaxies. This is apparently a psychological phase through which we must pass. On the other hand, the community seems stuck in this rut: it is high time to get past it. I’ve been trying to educate a reluctant audience for over a quarter century now. I know how it pains them because I shared that pain. I got over it. If you’re a scientist still struggling to do so, that’s on you.

There are some things we have to figure out for ourselves. If you don’t believe me, fine, but then get on with doing it yourself instead of burying your head in the sand. The first thing you have to do is give MOND a chance. When I allowed that possibility, I suddenly found myself working less hard than when I was desperately trying to save dark matter. If you come to the problem sure MOND is wrong+, you’ll always get the answer you want.

+I’ve been meaning to write a post (again) about the very real problems MOND suffers in clusters of galaxies. This is an important concern. It is also just one of hundreds of things to consider in the balance. We seem willing to give LCDM infinite mulligans while any problem MOND encounters is immediately seen as fatal. If we hold them to the same standard, both are falsified. If all we care about is explanatory power, LCDM always has that covered. If we care more about successful a priori predictions, MOND is less falsified than LCDM.

There is an important debate to be had on these issues, but we’re not having it. Instead, I frequently encounter people whose first response to any mention of MOND is to cite the bullet cluster in order to shut down discussion. They are unwilling to accept that there is a debate to be had, and are inevitably surprised to learn that LCDM has trouble explaining the bullet cluster too, let alone other clusters. It’s almost as if they are just looking for an excuse to not have to engage in serious thought that might challenge their belief system.