Big Trouble in a Deep Void

Big Trouble in a Deep Void

The following is a guest post by Indranil Banik, Moritz Haslbauer, and Pavel Kroupa (bios at end) based on their new paper

Modifying gravity to save cosmology

Cosmology is currently in a major crisis because of many severe tensions, the most serious and well-known being that local observations of how quickly the Universe is expanding (the so-called ‘Hubble constant’) exceed the prediction of the standard cosmological model, ΛCDM. This prediction is based on the cosmic microwave background (CMB), the most ancient light we can observe – which is generally thought to have been emitted about 400,000 years after the Big Bang. For ΛCDM to fit the pattern of fluctuations observed in the CMB by the Planck satellite and other experiments, the Hubble constant must have a particular value of 67.4 ± 0.5 km/s/Mpc. Local measurements are nearly all above this ‘Planck value’, but are consistent with each other. In our paper, we use a local value of 73.8 ± 1.1 km/s/Mpc using a combination of supernovae and gravitationally lensed quasars, two particularly precise yet independent techniques.

This unexpectedly rapid local expansion of the Universe could be due to us residing in a huge underdense region, or void. However, a void wide and deep enough to explain the Hubble tension is not possible in ΛCDM, which is built on Einstein’s theory of gravity, General Relativity. Still, there is quite strong evidence that we are indeed living within a large void with a radius of about 300 Mpc, or one billion light years. This evidence comes from many surveys covering the whole electromagnetic spectrum, from radio to X-rays. The most compelling evidence comes from analysis of galaxy number counts in the near-infrared, giving the void its name of the Keenan-Barger-Cowie (KBC) void. Gravity from matter outside the void would pull more than matter inside it, making the Universe appear to expand faster than it actually is for an observer inside the void. This ‘Hubble bubble’ scenario (depicted in Figure 1) could solve the Hubble tension, a possibility considered – and rejected – in several previous works (e.g. Kenworthy+ 2019). We will return to their objections against this idea.

Figure 1: Illustration of the Universe’s large scale structure. The darker regions are voids, and the bright dots represent galaxies. The arrows show how gravity from surrounding denser regions pulls outwards on galaxies in a void. If we were living in such a void (as indicated by the yellow star), the Universe would expand faster locally than it does on average. This could explain the Hubble tension. Credit: Technology Review

One of the main objections seemed to be that since such a large and deep void is incompatible with ΛCDM, it can’t exist. This is a common way of thinking, but the problem with it was clear to us from a very early stage. The first part of this logic is sound – assuming General Relativity, a hot Big Bang, and that the state of the Universe at early times is apparent in the CMB (i.e. it was flat and almost homogeneous then), we are led to the standard flat ΛCDM model. By studying the largest suitable simulation of this model (called MXXL), we found that it should be completely impossible to find ourselves inside a void with the observed size and depth (or fractional underdensity) of the KBC void – this possibility can be rejected with more confidence than the discovery of the Higgs boson when first announced. We therefore applied one of the leading alternative gravity theories called Milgromian Dynamics (MOND), a controversial idea developed in the early 1980s by Israeli physicist Mordehai Milgrom. We used MOND (explained in a simple way here) to evolve a small density fluctuation forwards from early times, studying if 13 billion years later it fits the density and velocity field of the local Universe. Before describing our results, we briefly introduce MOND and explain how to use it in a potentially viable cosmological framework. Astronomers often assume MOND cannot be extended to cosmological scales (typically >10 Mpc), which is probably true without some auxiliary assumptions. This is also the case for General Relativity, though in that case the scale where auxiliary assumptions become crucial is only a few kpc, namely in galaxies.

MOND was originally designed to explain why galaxies rotate faster in their outskirts than they should if one applies General Relativity to their luminous matter distribution. This discrepancy gave rise to the idea of dark matter halos around individual galaxies. For dark matter to cluster on such scales, it would have to be ‘cold’, or equivalently consist of rather heavy particles (above a few thousand eV/c2, or a millionth of a proton mass). Any lighter and the gravity from galaxies could not hold on to the dark matter. MOND assumes these speculative and unexplained cold dark matter haloes do not exist – the need for them is after all dependent on the validity of General Relativity. In MOND once the gravity from any object gets down to a certain very low threshold called a0, it declines more gradually with increasing distance, following an inverse distance law instead of the usual inverse square law. MOND has successfully predicted many galaxy rotation curves, highlighting some remarkable correlations with their visible mass. This is unexpected if they mostly consist of invisible dark matter with quite different properties to visible mass. The Local Group satellite galaxy planes also strongly favour MOND over ΛCDM, as explained using the logic of Figure 2 and in this YouTube video.

Figure 2: the satellite galaxies of the Milky Way and Andromeda mostly lie within thin planes. These are difficult to form unless the galaxies in them are tidal dwarfs born from the interaction of two major galaxies. Since tidal dwarfs should be free of dark matter due to the way they form, the satellites in the satellite planes should have rather weak self-gravity in ΛCDM. This is not the case as measured from their high internal velocity dispersions. So the extra gravity needed to hold galaxies together should not come from dark matter that can in principle be separated from the visible.

To extend MOND to cosmology, we used what we call the νHDM framework (with ν pronounced “nu”), originally proposed by Angus (2009). In this model, the cold dark matter of ΛCDM is replaced by the same total mass in sterile neutrinos with a mass of only 11 eV/c2, almost a billion times lighter than a proton. Their low mass means they would not clump together in galaxies, consistent with the original idea of MOND to explain galaxies with only their visible mass. This makes the extra collisionless matter ‘hot’, hence the name of the model. But this collisionless matter would exist inside galaxy clusters, helping to explain unusual configurations like the Bullet Cluster and the unexpectedly strong gravity (even in MOND) in quieter clusters. Considering the universe as a whole, νHDM has the same overall matter content as ΛCDM. This makes the overall expansion history of the universe very similar in both models, so both can explain the amounts of deuterium and helium produced in the first few minutes after the Big Bang. They should also yield similar fluctuations in the CMB because both models contain the same amount of dark matter. These fluctuations would get somewhat blurred by sterile neutrinos of such a low mass due to their rather fast motion in the early Universe. However, it has been demonstrated that Planck data are consistent with dark matter particles more massive than 10 eV/c2. Crucially, we showed that the density fluctuations evident in the CMB typically yield a gravitational field strength of 21 a0 (correcting an earlier erroneous estimate of 570 a0 in the above paper), making the gravitational physics nearly identical to General Relativity. Clearly, the main lines of early Universe evidence used to argue in favour of ΛCDM are not sufficiently unique to distinguish it from νHDM (Angus 2009).

The models nonetheless behave very differently later on. We estimated that for redshifts below about 50 (when the Universe is older than about 50 million years), the gravity would typically fall below a0 thanks to the expansion of the Universe (the CMB comes from a redshift of 1100). After this ‘MOND moment’, both the ordinary matter and the sterile neutrinos would clump on large scales just like in ΛCDM, but there would also be the extra gravity from MOND. This would cause structures to grow much faster (Figure 3), allowing much wider and deeper voids.


Figure 3: Evolution of the density contrast within a 300 co-moving Mpc sphere in different Newtonian (red) and MOND (blue) models, shown as a function of the Universe’s size relative to its present size (this changes almost linearly with time). Notice the much faster structure growth in MOND. The solid blue line uses a time-independent external field on the void, while the dot-dashed blue line shows the effect of a stronger external field in the past. This requires a deeper initial void to match present-day observations.

We used this basic framework to set up a dynamical model of the void. By making various approximations and trying different initial density profiles, we were able to simultaneously fit the apparent local Hubble constant, the observed density profile of the KBC void, and many other observables like the acceleration parameter, which we come to below. We also confirmed previous results that the same observables rule out standard cosmology at 7.09σ significance. This is much more than the typical threshold of 5σ used to claim a discovery in cases like the Higgs boson, where the results agree with prior expectations.

One objection to our model was that a large local void would cause the apparent expansion of the Universe to accelerate at late times. Equivalently, observations that go beyond the void should see a standard Planck cosmology, leading to a step-like behaviour near the void edge. At stake is the so-called acceleration parameter q0 (which we defined oppositely to convention to correct a historical error). In ΛCDM, we expect q0 = 0.55, while in general much higher values are expected in a Hubble bubble scenario. The objection of Kenworthy+ (2019) was that since the observed q0 is close to 0.55, there is no room for a void. However, their data analysis fixed q0 to the ΛCDM expectation, thereby removing any hope of discovering a deviation that might be caused by a local void. Other analyses (e.g. Camarena & Marra 2020b) which do not make such a theory-motivated assumption find q0 = 1.08, which is quite consistent with our best-fitting model (Figure 4). We also discussed other objections to a large local void, for instance the Wu & Huterer (2017) paper which did not consider a sufficiently large void, forcing the authors to consider a much deeper void to try and solve the Hubble tension. This led to some serious observational inconsistencies, but a larger and shallower void like the observed KBC void seems to explain the data nicely. In fact, combining all the constraints we applied to our model, the overall tension is only 2.53σ, meaning the data have a 1.14% chance of arising if ours were the correct model. The actual observations are thus not the most likely consequence of our model, but could plausibly arise if it were correct. Given also the high likelihood that some if not all of the observational errors we took from publications are underestimates, this is actually a very good level of consistency.

Figure 4: The predicted local Hubble constant (x-axis) and acceleration parameter (y-axis) as measured with local supernovae (black dot, with red error ellipses). Our best-fitting models with different initial void density profiles (blue symbols) can easily explain the observations. However, there is significant tension with the prediction of ΛCDM based on parameters needed to fit Planck observations of the CMB (green dot). In particular, local observations favour a higher acceleration parameter, suggestive of a local void.

Unlike other attempts to solve the Hubble tension, ours is unique in using an already existing theory (MOND) developed for a different reason (galaxy rotation curves). The use of unseen collisionless matter made of hypothetical sterile neutrinos is still required to explain the properties of galaxy clusters, which otherwise do not sit well with MOND. In addition, these neutrinos provide an easy way to explain the CMB and background expansion history, though recently Skordis & Zlosnik (2020) showed that this is possible in MOND with only ordinary matter. In any case, MOND is a theory of gravity, while dark matter is a hypothesis that more matter exists than meets the eye. The ideas could both be right, and should be tested separately.

A dark matter-MOND hybrid thus appears to be a very promising way to resolve the current crisis in cosmology. Still, more work is required to construct a fully-fledged relativistic MOND theory capable of addressing cosmology. This could build on the theory proposed by Skordis & Zlosnik (2019) in which gravitational waves travel at the speed of light, which was considered to be a major difficulty for MOND. We argued that such a theory would enhance structure formation to the required extent under a wide range of plausible theoretical assumptions, but this needs to be shown explicitly starting from a relativistic MOND theory. Cosmological structure formation simulations are certainly required in this scenario – these are currently under way in Bonn. Further observations would also help greatly, especially of the matter density in the outskirts of the KBC void at distances of about 500 Mpc. This could hold vital clues to how quickly the void has grown, helping to pin down the behaviour of the sought-after MOND theory.

There is now a very real prospect of obtaining a single theory that works across all astronomical scales, from the tiniest dwarf galaxies up to the largest structures in the Universe & its overall expansion rate, and from a few seconds after the birth of the Universe until today. Rather than argue whether this theory looks more like MOND or standard cosmology, what we should really do is combine the best elements of both, paying careful attention to all observations.


Authors

Indranil Banik is a Humboldt postdoctoral fellow in the Helmholtz Institute for Radiation and Nuclear Physics (HISKP) at the University of Bonn, Germany. He did his undergraduate and masters at Trinity College, Cambridge, and his PhD at Saint Andrews under Hongsheng Zhao. His research focuses on testing whether gravity continues to follow the Newtonian inverse square law at the low accelerations typical of galactic outskirts, with MOND being the best-developed alternative.

Moritz Haslbauer is a PhD student at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. He obtained his undergraduate degree from the University of Vienna and his masters from the University of Bonn. He works on the formation and evolution of galaxies and their distribution in the local Universe in order to test different cosmological models and gravitational theories. Prof. Pavel Kroupa is his PhD supervisor.

Pavel Kroupa is a professor at the University of Bonn and professorem hospitem at Charles University in Prague. He went to school in Germany and South Africa, studied physics in Perth, Australia, and obtained his PhD at Trinity College, Cambridge, UK. He researches stellar populations and their dynamics as well as the dark matter problem, therewith testing gravitational theories and cosmological models.

Link to the published science paper.

Contact: ibanik@astro.uni-bonn.de.

Indranil Banik’s YouTube channel.

A lengthy personal experience with experimental searches for WIMPs

A lengthy personal experience with experimental searches for WIMPs

This post is adopted from a web page I wrote in 2008, before starting this blog. It covers some ground that I guess is now historic about things that were known about WIMPs from their beginnings in the 1980s, and experimental searches therefore. In part, I was just trying to keep track of experimental limits, with updates added as noted since the first writing. This is motivated now by some troll on Twitter trying to gaslight people into believing there were no predictions for WIMPs prior to the discovery of the Higgs boson. Contrary to this assertion, the field had already gone through many generations of predictions, with the theorists moving the goal posts every time a prediction was excluded. I have colleagues involved in WIMP searches that have left that field in disgust at having the goal posts moved on them: what good are the experimental searches if, every time they reach the promised land, they’re simply told the promised land is over the next horizon? You experimentalists just keep your noses to the grindstone, and don’t bother the Big Brains with any inconvenient questions!

We were already very far down this path in 2008 – so far down it, I called it the express elevator to hell, since the predicted interaction cross-section kept decreasing to evade experimental limits. Since that time, theorists have added sideways in mass to their evasion tactics, with some advocating for “light” dark matter (less in mass than the 2 GeV Lee-Weinberg limit for the minimum WIMP mass) while others advocate for undetectably high mass WIMPzillas (because there’s a lot of unexplored if unexpected parameter space at high mass to roam around in before hitting the unitarity bound. Theorists love to go free range.)

These evasion tactics had become ridiculous well before the Higgs was discovered in 2012. Many people don’t seem to have memories that long, so let’s review. Text in normal font was written in 2008; later additions are italicized.

Seeking WIMPs in all the wrong places

This article has been updated many times since it was first written in 2008, at which time we were already many years down the path it describes.

The Need for Dark Matter
Extragalactic systems like spiral galaxies and clusters of galaxies exhibit mass discrepancies. The application of Newton’s Law of Gravity to the observed stars and gas fails to explain the rapid observed motions. This leads to the inference that some form of invisible mass – dark matter – dominates the dynamics of the universe.

WIMPs
If asked what the dark matter is, most scientists working in the field will respond honestly that we have no idea. There are many possible candidates. Some, like MACHOs (Massive Compact Halo Objects, perhaps brown dwarfs) have essentially been ruled out. However, in our heart of hearts there is a huge odds-on favorite: the WIMP.

WIMP stands for Weakly Interacting Massive Particle. This is an entire class of new fundamental particles that emerge from supersymmetry. Supersymmetry (SUSY) is a theoretical notion by which known elementary particles have supersymmetric partner particles. This notion is not part of the highly successful Standard Model of particle physics, but might exist provided that the Higgs boson exists. In the so-called Minimal Supersymmetric Standard Model (MSSM), which was hypothesized to explain the hierarchy problem (i.e., why do the elementary particles have the various masses that they do), the lightest stable supersymmetric particle is the neutralino. This is the WIMP that presumably makes up the dark matter.

2020 update: the Higgs does indeed exist. Unfortunately, it is too normal. That is, it fits perfectly well with the Standard Model without any need for SUSY. Indeed, it is so normal that MSSM is pretty much excluded. One can persist with more complicated theories (as always) but to date SUSY has flunked every experimental test, including the “golden test” of the decay of the Bs meson. Never heard of the golden test? The theorists were all about it until SUSY flunked it; now they never seem to mention it.

Cosmology, meet particle physics
There is a confluence of history in the development of previously distinct fields. The need for cosmological dark matter became clear in the 1980s, the same time that MSSM was hypothesized to solve the hierarchy problem in particle physics. Moreover, it was quickly realized that the cosmological dark matter could not be normal (“baryonic“) matter. New fundamental particles therefore seemed a natural fit.

The cosmic craving for CDM
There are two cosmological reason why we need non-baryonic cold dark matter (CDM):

  1. The measured density of gravitating mass appears to considerably exceed that in normal matter as constrained by Big Bang Nucleosynthesis (BBN): Ωm = 6 Ωb (so Ωnot baryons = 5 Ωbaryons).
  2. Gravity is too weak to grow the presently observed structures (e.g., galaxies, clusters, filaments) from the smooth initial condition observed in the cosmic microwave background (CMB) unless something speeds up the process. Extra mass will do this, but it must not interact with the photons of the CMB the way ordinary matter does.

By themselves, either of these arguments are strong. Together, they were compelling enough to launch the CDM paradigm. (Like most scientists of my generation, I certainly bought into it.)

From the astronomical perspective, all that is required is that the dark matter be non-baryonic and dynamically cold. Non-baryonic so that it does not participate in Big Bang Nucleosynthesis or interact with photons (a good way to remain invisible!), and dynamically cold (i.e., slow moving, not relativistic) so that it can clump and form gravitationally bound structures. Many things might satisfy these astronomical requirements. For example, supermassive black holes fit the bill, though they would somehow have to form in the first second of creation in order not to impact BBN.

The WIMP Miracle
From a particle physics perspective, the early universe was a high energy place where energy and mass could switch from one form to the other freely as enshrined in Einstein’s E = mc2. Pairs of particles and their antiparticles could come and go. However, as the universe expands, it cools. As it cools, it loses the energy necessary to create particle pairs. When this happens for a particular particle depends on the mass of the particle – the more mass, the more energy is required, and the earlier that particle-antiparticle pair “freeze out.” After freeze-out, the remaining particle-antiparticle pairs can mutually annihilate, leaving only energy. To avoid this fate, there must either be some asymmetry (apparently there was about one extra proton for every billion proton-antiproton pairs – an asymmetry on which our existence depends even if we don’t yet understand it) or the “cross section” – the probability for interacting – must be so low that particles and their antiparticles go their separate ways without meeting often enough to annihilate completely. This process leaves some relic density that depends on the properties of the particles.

If one asks what relic density is necessary to make up the cosmic dark matter, the cross section that comes out is about that of the weak nuclear force. A particle that interacts through the weak force but not the electromagnetic force will have the about the right relic density. Moreover, it won’t interfere with BBN or the CMB. The WIMPs hypothesized by supersymmetry fit the bill for cosmologists’ CDM. This coincidence of scales – the relic density and the weak force interaction scale – is sometimes referred to as the “WIMP miracle” and was part of the motivation to adopt the WIMP as the leading candidate for cosmological dark matter.

WIMP detection experiments
WIMPs as CDM is a well posed scientific hypothesis subject to experimental verification. From astronomical measurements, we know how much we need in the solar neighborhood – about 0.3 GeV c-2 cm-3. (That means there are a few hundred WIMPs passing through your body at any given moment, depending on the exact mass of the particle.) From particle physics, we know the weak interaction cross section, so can calculate the probability of a WIMP interacting with normal matter. In this respect, WIMPs are very much like neutrinos – they can pass right through solid matter because they do not experience the electromagnetic interactions that make ordinary matter solid. But once in a very rare while, they may come close enough to an atomic nucleus to interact with it via the weak force. This is the signature that can be sought experimentally.

There is a Nobel Prize waiting for whoever discovers the dark matter, so there are now many experiments seeking to do so. Generically, these use very pure samples of some element (like Germanium or Argon or Xenon) to act as targets for the WIMPs making up the dark matter component of our Milky Way Galaxy. The sensitivity required is phenomenal, and many mundane background events (cosmic rays, natural radioactivity, clumsy colleagues dropping beer cans) that might mimic WIMPs must be screened out. For this reason, there is a strong desire to perform these experiments in deep mine shafts where the apparatus can be shielded from the cosmic rays that bombard our planet and other practical nuisances.

The technology development involved in the hunt for WIMPs is amazing. The experimentalists have accomplished phenomenal things in the hunt for dark matter. That they have so far failed to detect it should give pause to any thinking person aquainted with the history, techniques, and successes of particle physics. This failure is both a surprise and disappointment to those who understand modern cosmology. It should not come as a surprise to anyone familiar with the dynamical evidence for – and against – dark matter.

Searches for WIMPs are proceeding apace. The sensitivity of these experiments is increasing at an accelerating rate. They already provide important constraints – see the figure:


Searching for WIMPs

This 2008 graph shows the status of searches for Weakly Interacting Massive Particles (WIMPs). The abscissa is the mass of the putative WIMP particle. For reference, the proton has a mass of about one in these units. The ordinate is a measure of the probability for WIMPs to interact with normal matter. Not much! The shaded regions represent theoretical expectations for WIMPs. The light red region is the original (Ellis et al.) forecast. The blue and green regions are more recent predictions (Trotta et al. 2008). The lines are representative experimental limits. The region above each line is excluded – if WIMPs had existed in that range of mass and interaction probability, they would have been detected already. The top line (from CDMS in 2004) excluded much of the original prediction. More recent work (colored lines, circa 2008) now approach the currently expected region.

April 2011 update: XENON100 sees nada. Note how the “expected” region continues to retreat downward in cross section as experiments exclude the previous sweet spots in this parameter. This is the express elevator to hell (see below).

September 2011 update: CREST-II claims a detection. Unfortunately, their positive result violates limits imposed by several other experiments, including XENON100. Somebody is doing their false event rejection wrong.

July 2012 update: XENON100 still seeing squat. Note that the “head” of the most probable (blue) region in the figure above is now excluded.
It is interesting to compare the time sequence of their results: first | run 8 | run 10.

November 2013 update: LUX sees nothing and excludes the various claims for detections of light dark matter (see inset). This exclusion of light dark matter appears to be highly significant as the very recent prediction was for about dozen of detections per month, which should have added up to an easy detection rather than the observed absence of events in excess of the expected background. Note also that the new exclusion boundary cuts deeply into the region predicted for traditional heavy (~ 100 GeV) WIMPs by Buchmuelleur et al. as depicted by Xenon100. The Buchmuelleur et al. “prediction” is already a downscaling from the bulk of probability predicted by Trotta et al. (2008 – the blue region in the figure above). This perpetual adjustment of the expectation for the WIMP cross-section is precisely the dodgy moving of the goal posts that prompted me to first write this web page years ago.

May 2014: “Crunch time” for dark matter comes and goes.

July 2016 update: PandaX sees nada.

August 2016 update: LUX continues to see nada. The minimum of their exclusion line now reaches the bottom axis of the 2009 plot (above the line, with the now-excluded blue blob). The “predicted” WIMP (gray area in the plot within this section) appears to have migrated to higher mass in addition to the downward migration of the cross-section. I guess this is the sideways turbolift to evil-Kirk universe hell.


Indeed, the experiments have perhaps been too successful. The original region of cross section-mass parameter space in which WIMPs were expected to reside was excluded years ago. Not easily dissuaded, theorists waved their hands, invoked the Majorana see-saw mechanism, and reduced the interaction probability to safely non-detectable levels. This is the vertical separation of the reddish and blue-green regions in the figure.

To quote a particle physicist, “The most appealing possibility – a weak scale dark matter particle interacting with matter via Z-boson exchange – leads to the cross section of order 10-39 cm2 which was excluded back in the ’80s by the first round of dark matter experiments. There exists another natural possibility for WIMP dark matter: a particle interacting via Higgs boson exchange. This would lead to the cross section in the 10-42-10-46 cm2 ballpark (depending on the Higgs mass and on the coupling of dark matter to the Higgs).”

From this 2011 Resonaances post

Though set back and discouraged by this theoretical slight of hand (the WIMP “miracle” is now more of a vague coincidence, like seeing an old flame in Grand Central Station but failing to say anything because (a) s/he is way over on another platform and (b) on reflection, you’re not really sure it was him or her after all), experimentallists have been gaining ground on the newly predicted region. If all goes as planned, most of the plausible parameter space will have been explored in a few more years. (I have heard it asserted that “we’ll know what the dark matter is in 5 years” every 5 years for the past two decades. Make that three decades now.)

The express elevator to hell

We’re on an express elevator to hell – going down!

There is a slight problem with the current predictions for WIMPs. While there is a clear focus point where WIMPs most probably reside (the blue blob in the figure), there is also a long tail to low interaction cross section. If we fail to detect WIMPs when experimental sensitivity encompasses the blob, the presumption will be that we’re just unlucky and WIMPs happen to live in the low-probability tail that is not yet excluded. (Low probability regions tend to seem more reasonable as higher probability regions are rejected and we forget about them.) This is the express elevator to hell. No matter how much time, money, and effort we invest in further experimentation, the answer will always be right around the corner. This process can go on forever.

Is dark matter a falsifiable hypothesis?

The existence of dark matter is an inference, not an experimental fact. Individual candidates for the dark matter can be tested and falsified. For example, it was once reasonable to imagine that innumerable brown dwarfs could be the dark matter. That is no longer true – were there that many brown dwarfs out there, we would have seen them directly by now. The brown dwarf hypothesis has been falsified. WIMPs are falsifiable dark matter candidates – provided we don’t continually revise their interaction probability. If we keep doing this, the hypothesis ceases to have predictive power and is no longer subject to falsification.

The concept of dark matter is not falsifiable. If we exclude one candidate, we are free to make up another one. After WIMPs, the next obvious candidate is axions. Should those be falsified, we invent something else. (Particle physicists love to do this. The literature is littered with half-baked dark matter candidates invented for dubious reasons, often to explain phenomena with obvious astrophysical causes. The ludicrous uproar over the ATIC and PAMELA cosmic ray experiments is a good example.) (Circa 2008, there was a lot of enthusiasm that certain signals detected by cosmic ray experiments were caused by dark matter. These have gone away.)


September 2011 update: Fermi confirms the PAMELA positron excess. Too well for it to be dark matter: there is no upper threshold energy corresponding to the WIMP mass. Apparently these cosmic rays are astrophysical in origin, which comes as no surprise to high energy astrophysicists.

April 2013 update: AMS makes claims to detect dark matter that are so laughably absurd they do not warrant commentary.

September 2016 update: There is no update. People seem to have given up on claiming that there is any sign of dark matter in cosmic rays. There have been claims of dark matter causing signatures in gamma ray data and separately in X-ray data. These never looked credible and went away on a time scale shorter so short that on one occasion, an entire session of a 2014 conference had been planned to discuss a gamma ray signal at 126 GeV as dark matter. I asked the organizers a few months in advance if that was even going to be a thing by the time we met. It wasn’t: every speaker scheduled for that session gave some completely unrelated talk.

November 2019 update: Xenon1T sees no sign of WIMPs. (There is some hint of an excess of electron recoils. These are completely the wrong energy scale to be the signal that this experiment was designed to detect.

WIMP prediction and limits. The shaded region marks the prediction of Trotta et al. (2008) for the WIMP mass and interaction cross-section. The lighter shade depicts the 95% confidence limit, the dark region the 68% c.l., and the cross the best fit. The heavy line shows the 90% c.l. exclusion limit from the Xenon1T experiment. Everything above the line is excluded, ruling out virtually all the parameter space in which WIMPs had been predicted to reside.

2020 comment: I was present at a meeting in 2009 when the predictions of Trotta et al (above, in grey, and higher up, in blue and green) was new and fresh. I was, at that point, already feeling like we’d been led down this garden path more than one too many times. So I explicitly asked about the long tail to low cross-section. I was assured that the probability in that tail was < 2%; we would surely detect the WIMP at somewhere around the favored value (the X in the gray figure). We did not. Essentially all of that predicted parameter space has been excluded, with only a tiny fraction of the 2% tail extending below current limits. Worse, the top border of the Trotta et al prediction was based on the knowledge that the parameter space to higher cross section – where the WIMP was originally predicted to reside – had already been experimentally excluded. So the grey region understates the range of parameter space over which WIMPs were reasonably expected to exist. I’m sure there are people who would like to pretend that the right “prediction” for the WIMP is at still lower cross section. That would be an example of how those who are ignorant (or in denial) of history are doomed to repeat it.

I predict that none the big, expensive WIMP experiments will ever find what they’re looking for. It is past time to admit that the lack of detections is because WIMPs don’t exist. I could be proven wrong by the simple expedient of obtaining a credible WIMP detection. I’m sure there are many bright, ambitious scientists who will take up that challenge. To them I say: after you’ve spent your career at the bottom of a mine shaft with no result to show for it, look up at the sky and remember that I tried to warn you.


Cosmology, then and now

Cosmology, then and now

I have been busy teaching cosmology this semester. When I started on the faculty of the University of Maryland in 1998, there was no advanced course on the subject. This seemed like an obvious hole to fill, so I developed one. I remember with fond bemusement the senior faculty, many of them planetary scientists, sending Mike A’Hearn as a stately ambassador to politely inquire if cosmology had evolved beyond a dodgy subject and was now rigorous enough to be worthy of a 3 credit graduate course.

Back then, we used transparencies or wrote on the board. It was novel to have a course web page. I still have those notes, and marvel at the breadth and depth of work performed by my younger self. Now that I’m teaching it for the first time in a decade, I find it challenging to keep up. Everything has to be adapted to an electronic format, and be delivered remotely during this damnable pandemic. It is a less satisfactory experience, and it has precluded posting much here.

Another thing I notice is that attitudes have evolved along with the subject. The baseline cosmology, LCDM, has not changed much. We’ve tilted the power spectrum and spiked it with extra baryons, but the basic picture is that which emerged from the application of classical observational cosmology – measurements of the Hubble constant, the mass density, the ages of the oldest stars, the abundances of the light elements, number counts of faint galaxies, and a wealth of other observational constraints built up over decades of effort. Here is an example of combining such constraints, and exercise I have students do every time I teach the course:

Observational constraints in the mass density-Hubble constant plane assembled by students in my cosmology course in 2002. The gray area is excluded. The open window is the only space allowed; this is LCDM. The box represents the first WMAP estimate in 2003. CMB estimates have subsequently migrated out of the allowed region to lower H0 and higher mass density, but the other constraints have not changed much, most famously H0, which remains entrenched in the low to mid-70s.

These things were known by the mid-90s. Nowadays, people seem to think Type Ia SN discovered Lambda, when really they were just icing on a cake that was already baked. The location of the first peak in the acoustic power spectrum of the microwave background was corroborative of the flat geometry required by the picture that had developed, but trailed the development of LCDM rather than informing its construction. But students entering the field now seem to have been given the impression that these were the only observations that mattered.

Worse, they seem to think these things are Known, as if there’s never been a time that we cosmologists have been sure about something only to find later that we had it quite wrong. This attitude is deleterious to the progress of science, as it precludes us from seeing important clues when they fail to conform to our preconceptions. To give one recent example, everyone seems to have decided that the EDGES observation of 21 cm absorption during the dark ages is wrong. The reason? Because it is impossible in LCDM. There are technical reasons why it might be wrong, but these are subsidiary to Attitude: we can’t believe it’s true, so we don’t. But that’s what makes a result important: something that makes us reexamine how we perceive the universe. If we’re unwilling to do that, we’re no longer doing science.

Second peak bang on

Second peak bang on

At the dawn of the 21st century, we were pretty sure we had solved cosmology. The Lambda Cold Dark Matter (LCDM) model made strong predictions for the power spectrum of the Cosmic Microwave Background (CMB). One was that the flat Robertson-Walker geometry that we were assuming for LCDM predicted the location of the first peak should be at ℓ = 220. As I discuss in the history of the rehabilitation of Lambda, this was a genuinely novel prediction that was clearly confirmed first by BOOMERanG and subsequently by many other experiments, especially WMAP. As such, it was widely (and rightly) celebrated among cosmologists. The WMAP team has been awarded major prizes, including the Gruber cosmology prize and the Breakthrough prize.

As I discussed in the previous post, the location of the first peak was not relevant to the problem I had become interested in: distinguishing whether dark matter existed or not. Instead, it was the amplitude of the second peak of the acoustic power spectrum relative to the first that promised a clear distinction between LCDM and the no-CDM ansatz inspired by MOND. This was also first tested by BOOMERanG:

postboomer
The CMB power spectrum observed by BOOMERanG in 2000. The first peak is located exactly where LCDM predicted it to be. The second peak was not detected, but was clearly smaller than expected in LCDM. It was consistent with the prediction of no-CDM.

In a nutshell, LCDM predicted a big second peak while no-CDM predicted a small second peak. Quantitatively, the amplitude ratio A1:2 was predicted to be in the range 1.54 – 1.83 for LCDM, and 2.22 – 2.57 for no-CDM. Note that A1:2 is smaller for LCDM because the second peak is relatively big compared to the first. 

BOOMERanG confirmed the major predictions of both competing theories. The location of the first peak was exactly where it was expected to be for a flat Roberston-Walker geometry. The amplitude of the second peak was that expected in no-CDM. One can have the best of both worlds by building a model with high Lambda and no CDM, but I don’t take that too seriously: Lambda is just a place holder for our ignorance – in either theory.

I had made this prediction in the hopes that cosmologists would experience the same crisis of faith that I had when MOND appeared in my data. Now it was the data that they valued that was misbehaving – in precisely the way I had predicted with a model that was motivated by MOND (albeit not MOND itself). Surely they would see reason?

There is a story that Diogenes once wandered the streets of Athens with a lamp in broad daylight in search of an honest man. I can relate. Exactly one member of the CMB community wrote to me to say “Gee, I was wrong to dismiss you.” [I paraphrase only a little.] When I had the opportunity to point out to them that I had made this prediction, the most common reaction was “no you didn’t.” Exactly one of the people with whom I had this conversation actually bothered to look up the published paper, and that person also wrote to say “Gee, I guess you did.” Everyone else simply ignored it.

The sociology gets worse from here. There developed a counter-narrative that the BOOMERang data were wrong, therefore my prediction fitting it was wrong. No one asked me about it; I learned of it in a chance conversation a couple of year later in which it was asserted as common knowledge that “the data changed on you.” Let’s examine this statement.

The BOOMERanG data were early, so you expect data to improve. At the time, I noted that the second peak “is only marginally suggested by the data so far”, so I said that “as data accumulate, the second peak should become clear.” It did.

The predicted range quoted above is rather generous. It encompassed the full variation allowed by Big Bang Nucleosynthesis (BBN) at the time (1998/1999). I intentionally considered the broadest range of parameters that were plausible to be fair to both theories. However, developments in BBN were by then disfavoring low-end baryon densities, so the real expectation for the predicted range was narrower. Excluding implausibly low baryon densities, the predicted ranges were 1.6 – 1.83 for LCDM and 2.36 – 2.4 for no-CDM. Note that the prediction of no-CDM is considerably more precise than that of LCDM. This happens because all the plausible models run together in the absence of the forcing term provided by CDM. For hypothesis testing, this is great: the ratio has to be this one value, and only this value.

A few years later, WMAP provided a much more accurate measurement of the peak locations and amplitudes. WMAP measured A1:2 = 2.34 ± 0.09. This is bang on the no-CDM prediction of 2.4.

peaks_predict_wmap
Peak locations measured by WMAP in 2003 (points) compared to the a priori (1999) predictions of LCDM (red tone lines) and no-CDM (blue tone lines).

The prediction for the amplitude ratio A1:2 that I made over twenty years ago remains correct in the most recent CMB data. The same model did not successfully predict the third peak, but I didn’t necessarily expect it to: the no-CDM ansatz (which is just General Relativity without cold dark matter) had to fail at some point. But that gets ahead of the story: no-CDM made a very precise prediction for the second peak. LCDM did not.

LCDM only survives because people were willing to disregard existing bounds – in this case, on the baryon density. It was easier to abandon the most accurately measured and the only over-constrained pillar of Big Bang cosmology than acknowledge a successful prediction that respected all those things. For a few years, the attitude was “BBN was close, but not quite right.” In time, what appears to be confirmation bias kicked in, and the measured abundances of the light elements migrated towards the “right” value – as  specified by CMB fits.

LCDM does give an excellent fit to the power spectrum of the CMB. However, only the location of the first peak was predicted correctly in advance. Everything subsequent to that (at higher ℓ) is the result of a multi-parameter fit with sufficient flexibility to accommodate any physically plausible power spectrum. However, there is no guarantee that the parameters of the fit will agree with independent data. For a long while they did, but now we see the emergence of tensions in not only the baryon density, but also the amplitude of the power spectrum, and most famously, the value of the Hubble constant. Perhaps this is the level of accuracy that is necessary to begin to perceive genuine anomalies. Beyond the need to invoke invisible entities in the first place.

I could say a lot more, and perhaps will in future. For now, I’d just like to emphasize that I made a very precise, completely novel prediction for the amplitude of the second peak. That prediction came true. No one else did that. Heck of a coincidence, if there’s nothing to it.

A pre-history of the prediction of the amplitude of the second peak of the cosmic microwave background

A pre-history of the prediction of the amplitude of the second peak of the cosmic microwave background

In the previous post, I wrote about a candidate parent relativistic theory for MOND that could fit the acoustic power spectrum of the cosmic microwave background (CMB). That has been a long time coming, and probably is not the end of the road. There is a long and largely neglected history behind this, so let’s rewind a bit.

I became concerned about the viability of the dark matter paradigm in the mid-1990s. Up until that point, I was a True Believer, as much as anyone. Clearly, there had to be dark matter, specifically some kind of non-baryonic cold dark matter (CDM), and almost certainly a WIMP. Alternatives like MACHOs (numerous brown dwarfs) were obviously wrong (Big Bang Nucleosynthesis [BBN] taught us that there are not enough baryons), so microlensing experiments searching for them would make great variable star catalogs but had no chance of detecting dark matter. In short, I epitomized the impatient attitude against non-WIMP alternatives that persists throughout much of the community to this day.

It thus came as an enormous surprise that the only theory to successfully predict – in advance – our observations of low surface brightness galaxies was MOND. Dark matter, as we understood it at the time, predicted nothing of the sort. This made me angry.

grinch-max-03-q30-994x621-1

How could it be so?

To a scientist, a surprising result is a sign to think again. Maybe we do not understand this thing we thought we understood. Is it merely a puzzle – some mistake in our understanding or implementation of our preferred theory? Or is it a genuine anomaly – an irrecoverable failure? How is it that a completely different theory can successfully predict something that my preferred theory did not?

In this period, I worked very hard to make things work out for CDM. It had to be so! Yet every time I thought I had found a solution, I realized that I had imposed an assumption that guaranteed the desired result. I created and rejected tautology after tautology. This process unintentionally foretold the next couple of decades of work in galaxy formation theory: I’ve watched others pursue the same failed ideas and false leads over and over and over again.

After months of pounding my head against the proverbial wall, I realized that if I was going to remain objective, I shouldn’t just be working on dark matter. I should also try just to see how things worked in MOND. Suddenly I found myself working much less hard. The things that made no sense in terms of dark matter tumbled straight out of MOND.

This concerned me gravely. Could we really be so wrong about something so important? I went around giving talks, expressing the problems about which I was concerned, and asking how it could be that MOND got so many novel predictions correct in advance if there was nothing to it.

Reactions varied. The first time I mentioned it in a brief talk at the Institute of Astronomy in Cambridge, friend and fellow postdoc Adi Nusser became visibly agitated. He bolted outside as soon as I was done, and I found him shortly later with a cigarette turned mostly to ash as if in one long draw. I asked him what he thought and he replied the he was “NOT HAPPY!” Neither was I. It made no sense.

I first spoke at length on the subject in a colloquium at the Department of Terrestrial Magnetism, where Vera Rubin worked, along with other astronomers and planetary scientists. I was concerned about how Vera would react, so I was exceedingly thorough, spending most of the time on the dark matter side of the issue. She reacted extremely well, as did the rest of the audience, many telling me it was the best talk they had heard in five years. (I have heard this many times since; apparently 5 years is some sort of default for a long time that is short of forever.)

Several months later, I gave the same talk at the University of Pennsylvania to an audience of mostly particle physicists and early-universe cosmologists. A rather different reaction ensued. One person shouted “WHAT HAVE YOU DONE WRONG!” It wasn’t a question.

These polar opposite reactions from different scientific audiences made me realize that sociology was playing a role. As I continued to give the talk to other groups, the pattern above repeated, with the reception being more positive the further an audience was from cosmology.

I started asking people what would concern them about the paradigm. What would falsify CDM? Sometimes this brought bemused answers, like that of Tad Pryor: “CDM has been falsified many times.” (This was in 1997, at which time CDM meant standard SCDM which was indeed pretty thoroughly falsified at that point: we were on the cusp of the transition to LCDM.) More often it met with befuddlement: “Why would you even ask that?” It was disappointing how often this was the answer, as a physical theory is only considered properly scientific if it is falsifiable. [All of the people who had this reaction agreed to that much: I often specifically asked.] The only thing that was clear was that most cosmologists couldn’t care less what galaxies did. Galaxies were small, non-linear entities, they argued… to the point that, as Martin Rees put it, “we shouldn’t be surprised at anything they do.”

I found this attitude to be less than satisfactory. However, I could see its origin. I only became aware of MOND because it reared its ugly head in my data. I had come face to face with the beast, and it shook my mostly deeply held scientific beliefs. Lacking this experience, it must have seemed to them like the proverbial boy crying wolf.

So, I started to ask cosmologists what would concern them. Again, most gave no answer; it was simply inconceivable to them that something could be fundamentally amiss. Among those who did answer, the most common refrain was “Well, if the CMB did something weird.” They never specified what they meant by this, so I set out to quantify what would be weird.

This was 1998. At that time, we knew the CMB existed (the original detection in the 1960s earning Penzias and Wilson a Nobel prize) and that there were temperature fluctuations on large scales at the level of one part in 100,000 (the long-overdue detection of said fluctuations by the COBE satellite earning Mathers and Smoot another Nobel prize). Other experiments were beginning to detect the fluctuations on finer angular scales, but nothing definitive was yet known about the locations and amplitudes of the peaks that were expected in the power spectrum. However, the data were improving rapidly, and an experiment called BOOMERanG was circulating around the polar vortex of Antartica. Daniel Eisenstein told me in a chance meeting that “The data are in the can.”

This made the issue of quantifying what was weird a pressing one. The best prediction is one that comes before the fact, totally blind to the data. But what was weird?

At the time, there was no flavor of relativistic MOND yet in existence. But we know that MOND is indistinguishable from Newton in the limit of high accelerations, and whatever theory contains MOND in the appropriate limit must also contain General Relativity. So perhaps the accelerations in the early universe when the CMB occurred were high enough that MOND effects did not yet occur. This isn’t necessarily the case, but making this ansatz was the only way to proceed at that time. Then it was just General Relativity with or without dark matter. That’s what was weird: no dark matter. So what difference did that make?

Using the then-standard code CMBFAST, I computed predictions for the power spectrum for two families models: LCDM and no-CDM. The parameters of LCDM were already well known at that time. There was even an imitation of the Great Debate about it between Turner and Peebles, though it was more consensus than debate. This enabled a proper prediction of what the power spectrum should be.

Most of the interest in cosmology then concerned the geometry of the universe. We had convinced ourselves that we had to bring back Lambda, but this made a strong prediction for the location of the first peak – a prediction that was confirmed by BOOMERanG in mid-2000.

The geometry on which most cosmologists were focused was neither here nor there to the problem I had set myself. I had no idea what the geometry of a MOND universe might be, and no way to predict the locations of the peaks in the power spectrum. I had to look for relative differences, and these proved not to be all that weird. The difference between LCDM and no-CDM was, in fact, rather subtle.

The main difference I found between models with and without dark matter was a difference in the amplitude of the second peak relative to the first. As I described last time, baryons act to damp the oscillations, while dark matter acts to drive them. Take away the dark matter and there is only damping, resulting in the second peak getting dragged down. The primary variable controlling the ratio of the first-to-second peak amplitude was the baryon fraction. Without dark matter, the baryon fraction is 1. In LCDM, it was then thought to be in the range 0.05 – 0.15. (The modern value is 0.16.)

This is the prediction I published in 1999:

img49

the red lines in the left plot represent LCDM, the blue lines in the right plot no-CDM. The data that were available at the time I wrote the paper are plotted as the lengthy error bars. The location of the first peak had sorta been localized, but nothing was yet known about the amplitude of the second. Here was a clear, genuinely a priori prediction: for a given amplitude of the first peak, the amplitude of the second was smaller without CDM than with it.

Quantitatively, the ratio of the amplitude of the first to second peak was predicted to be in the range 1.54 – 1.83 for LCDM. This range represents the full range of plausible LCDM parameters as we knew them at the time, which as I noted above, we thought we knew very well. For the case of no-CDM, the predicted range was 2.22 – 2.57. In both cases, the range of variation was dominated by the uncertainty in the baryon density from BBN. While this allowed for a little play, the two hypotheses should be easily distinguishable, since the largest ratio possible in LCDM was clearly less than the smallest possible in no-CDM.

And that is as far as I am willing to write today. This is already a long post, so we’ll return to the results of this test in the future.

A Significant Theoretical Advance

A Significant Theoretical Advance

The missing mass problem has been with us many decades now. Going on a century if you start counting from the work of Oort and Zwicky in the 1930s. Not quite a half a century if we date it from the 1970s when most of the relevant scientific community started to take it seriously. Either way, that’s a very long time for a major problem to go unsolved in physics. The quantum revolution that overturned our classical view of physics was lightning fast in comparison – see the discussion of Bohr’s theory in the foundation of quantum mechanics in David Merritt’s new book.

To this day, despite tremendous efforts, we have yet to obtain a confirmed laboratory detection of a viable dark matter particle – or even a hint of persuasive evidence for the physics beyond the Standard Model of Particle Physics (e.g., supersymmetry) that would be required to enable the existence of such particles. We cannot credibly claim (as many of my colleagues insist they can) to know that such invisible mass exists. All we really know is that there is a discrepancy between what we see and what we get: the universe and the galaxies within it cannot be explained by General Relativity and the known stable of Standard Model particles.

If we assume that General Relativity is both correct and sufficient to explain the universe, which seems like a very excellent assumption, then we are indeed obliged to invoke non-baryonic dark matter. The amount of astronomical evidence that points in this direction is overwhelming. That is how we got to where we are today: once we make the obvious, imminently well-motivated assumption, then we are forced along a path in which we become convinced of the reality of the dark matter, not merely as a hypothetical convenience to cosmological calculations, but as an essential part of physical reality.

I think that the assumption that General Relativity is correct is indeed an excellent one. It has repeatedly passed many experimental and observational tests too numerous to elaborate here. However, I have come to doubt the assumption that it suffices to explain the universe. The only data that test it on scales where the missing mass problem arises is the data from which we infer the existence of dark matter. Which we do by assuming that General Relativity holds. The opportunity for circular reasoning is apparent – and frequently indulged.

It should not come as a shock that General Relativity might not be completely sufficient as a theory in all circumstances. This is exactly the motivation for and the working presumption of quantum theories of gravity. That nothing to do with cosmology will be affected along the road to quantum gravity is just another assumption.

I expect that some of my colleagues will struggle to wrap their heads around what I just wrote. I sure did. It was the hardest thing I ever did in science to accept that I might be wrong to be so sure it had to be dark matter – because I was sure it was. As sure of it as any of the folks who remain sure of it now. So imagine my shock when we obtained data that made no sense in terms of dark matter, but had been predicted in advance by a completely different theory, MOND.

When comparing dark matter and MOND, one must weigh all evidence in the balance. Much of the evidence is gratuitously ambiguous, so the conclusion to which one comes depends on how one weighs the more definitive lines of evidence. Some of this points very clearly to MOND, while other evidence prefers non-baryonic dark matter. One of the most important lines of evidence in favor of dark matter is the acoustic power spectrum of the cosmic microwave background (CMB) – the pattern of minute temperature fluctuations in the relic radiation field imprinted on the sky a few hundred thousand years after the Big Bang.

The equations that govern the acoustic power spectrum require General Relativity, but thankfully the small amplitude of the temperature variations permits them to be solved in the limit of linear perturbation theory. So posed, they can be written as a damped and driven oscillator. The power spectrum favors features corresponding to standing waves at the epoch of recombination when the universe transitioned rather abruptly from an opaque plasma to a transparent neutral gas. The edge of a cloud provides an analog: light inside the cloud scatters off the water molecules and doesn’t get very far: the cloud is opaque. Any light that makes it to the edge of the cloud meets no further resistance, and is free to travel to our eyes – which is how we perceive the edge of the cloud. The CMB is the expansion-redshifted edge of the plasma cloud of the early universe.

An easy way to think about a damped and a driven oscillator is a kid being pushed on a swing. The parent pushing the child is a driver of the oscillation. Any resistance – like the child dragging his feet – damps the oscillation. Normal matter (baryons) damps the oscillations – it acts as a net drag force on the photon fluid whose oscillations we observe. If there is nothing going on but General Relativity plus normal baryons, we should see a purely damped pattern of oscillations in which each peak is smaller than the one before it, as seen in the solid line here:

CMB_Pl_CLonly
The CMB acoustic power spectrum predicted by General Relativity with no cold dark matter (line) and as observed by the Planck satellite (data points).

As one can see, the case of no Cold Dark Matter (CDM) does well to explain the amplitudes of the first two peaks. Indeed, it was the only hypothesis to successfully predict this aspect of the data in advance of its observation. The small amplitude of the second peak came as a great surprise from the perspective of LCDM. However, without CDM, there is only baryonic damping. Each peak should have a progressively lower amplitude. This is not observed. Instead, the third peak is almost the same amplitude as the second, and clearly higher than expected in the pure damping scenario of no-CDM.

CDM provides a net driving force in the oscillation equations. It acts like the parent pushing the kid. Even though the kid drags his feet, the parent keeps pushing, and the amplitude of the oscillation is maintained. For the third peak at any rate. The baryons are an intransigent child and keep dragging their feet; eventually they win and the power spectrum damps away on progressively finer angular scales (large 𝓁 in the plot).

As I wrote in this review, the excess amplitude of the third peak over the no-CDM prediction is the best evidence to my mind in favor of the existence of non-baryonic CDM. Indeed, this observation is routinely cited by many cosmologists to absolutely require dark matter. It is argued that the observed power spectrum is impossible without it. The corollary is that any problem the dark matter picture encounters is a mere puzzle. It cannot be an anomaly because the CMB tells us that CDM has to exist.

Impossible is a high standard. I hope the reader can see the flaw in this line of reasoning. It is the same as above. In order to compute the oscillation power spectrum, we have assumed General Relativity. While not replacing it, the persistent predictive successes of a theory like MOND implies the existence of a more general theory. We do not know that such a theory cannot explain the CMB until we develop said theory and work out its predictions.

That said, it is a tall order. One needs a theory that provides a significant driving term without a large amount of excess invisible mass. Something has to push the swing in a universe full of stuff that only drags its feet. That does seem nigh on impossible. Or so I thought until I heard a talk by Pedro Ferreira where he showed how the scalar field in TeVeS – the relativistic MONDian theory proposed by Bekenstein – might play the same role as CDM. However, he and his collaborators soon showed that the desired effect was indeed impossible, at least in TeVeS: one could not simultaneously fit the third peak and the data preceding the first. This was nevertheless an important theoretical development, as it showed how it was possible, at least in principle, to affect the peak ratios without massive amounts of non-baryonic CDM.

At this juncture, there are two options. One is to seek a theory that might work, and develop it to the point where it can be tested. This is a lot of hard work that is bound to lead one down many blind alleys without promise of ultimate success. The much easier option is to assume that it cannot be done. This is the option adopted by most cosmologists, who have spent the last 15 years arguing that the CMB power spectrum requires the existence of CDM. Some even seem to consider it to be a detection thereof, in which case we might wonder why we bother with all those expensive underground experiments to detect the stuff.

Rather fewer people have invested in the approach that requires hard work. There are a few brave souls who have tried it; these include Constantinos Skordis and Tom Złosnik. Very recently, the have shown a version of a relativistic MOND theory (which they call RelMOND) that does fit the CMB power spectrum. Here is the plot from their paper:

CMB_RelMOND_2020

Note that black line in their plot is the fit of the LCDM model to the Planck power spectrum data. Their theory does the same thing, so it necessarily fits the data as well. Indeed, a good fit appears to follow for a range of parameters. This is important, because it implies that little or no fine-tuning is needed: this is just what happens. That is arguably better than the case for LCDM, in which the fit is very fine-tuned. Indeed, that was a large point of making the measurement, as it requires a very specific set of parameters in order to work. It also leads to tensions with independent measurements of the Hubble constant, the baryon density, and the amplitude of the matter power spectrum at low redshift.

As with any good science result, this one raises a host of questions. It will take time to explore these. But this in itself is a momentous result. Irrespective if RelMOND is the right theory or, like TeVeS, just a step on a longer path, it shows that the impossible is in fact possible. The argument that I have heard repeated by cosmologists ad nauseam like a rosary prayer, that dark matter is the only conceivable way to explain the CMB power spectrum, is simply WRONG.

A Philosophical Approach to MOND

A Philosophical Approach to MOND is a new book by David Merritt. This is a major development in the both the science of cosmology and astrophysics, on the one hand, and the philosophy and history of science on the other. It should be required reading for anyone interested in any of these topics.

For many years, David Merritt was a professor of astrophysics who specialized in gravitational dynamics, leading a number of breakthroughs in the effects of supermassive black holes in galaxies on the orbits of stars around them. He has since transitioned to the philosophy of science. This may not sound like a great leap, but it is: these are different scholarly fields, each with their own traditions, culture, and required background education. Changing fields like this is a bit like switching boats mid-stream: even a strong swimmer may flounder in the attempt given the many boulders academic disciplines traditionally place in the stream of knowledge to mark their territory. Merritt has managed the feat with remarkable grace, devouring the background reading and coming up to speed in a different discipline to the point of a lucid fluency.

For the most part, practicing scientists have little interaction with philosophers and historians of science. Worse, we tend to have little patience for them. The baseline presumption of many physical scientists is that we know what we’re doing; there is nothing the philosophers can teach us. In the daily practice of what Kuhn called normal science, this is close to true. When instead we are faced with potential paradigm shifts, the philosophy of science is critical, and the absence of training in it on the part of many scientists becomes glaring.

In my experience, most scientists seem to have heard of Popper and Kuhn. If that. Physical scientists will almost always pay lip service to Popper’s ideal of falsifiablity, and that’s pretty much the extent of it. Living up to applying that ideal is another matter. If an idea that is near and dear to their hearts and careers is under threat, the knee-jerk response is more commonly “let’s not get carried away!”

There is more to the philosophy of science than that. The philosophers of science have invested lots of effort in considering both how science works in practice (e.g., Kuhn) and how it should work (Popper, Lakatos, …) The practice and the ideal of science are not always the same thing.

The debate about dark matter and MOND hinges on the philosophy of science in a profound way. I do not think it is possible to make real progress out of our current intellectual morass without a deep examination of what science is and what it should be.

Merritt takes us through the methodology of scientific research programs, spelling out what we’ve learned from past experience (the history of science) and from careful consideration of how science should work (its philosophical basis). For example, all scientists agree that it is important for a scientific theory to have predictive power. But we are disturbingly fuzzy on what that means. I frequently hear my colleagues say things like “my theory predicts that” in reference to some observation, when in fact no such prediction was made in advance. What they usually mean is that it fits well with the theory. This is sometimes true – they could have predicted the observation in advance if they had considered that particular case. But sometimes it is retroactive fitting more than prediction – consistency, perhaps, but it could have gone a number of other ways equally well. Worse, it is sometimes a post facto assertion that is simply false: not only was the prediction not made in advance, but the observation was genuinely surprising at the time it was made. Only in retrospect is it “correctly” “predicted.”

The philosophers have considered these situations. One thing I appreciate is Merritt’s review of the various takes philosophers have on what counts as a prediction. I wish I had known these things when I wrote the recent review in which I took a very restrictive definition to avoid the foible above. The philosophers provide better definitions, of which more than one can be usefully applicable. I’m not going to go through them here: you should read Merritt’s book, and those of the philosophers he cites.

From this philosophical basis, Merritt makes a systematic, dare I say, scientific, analysis of the basic tenets of MOND and MONDian theories, and how they fare with regard to their predictions and observational tests. Along the way, he also considers the same material in the light of the dark matter paradigm. Of comparable import to confirmed predictions are surprising observations: if a new theory predicts that the sun will rise in the morning, that isn’t either new or surprising. If instead a theory expects one thing but another is observed, that is surprising, and it counts against that theory even if it can be adjusted to accommodate the new fact. I have seen this happen over and over with dark matter: surprising observations (e.g., the absence of cusps in dark matter halos, the small numbers of dwarf galaxies, downsizing in which big galaxies appear to form earliest) are at first ignored, doubted, debated, then partially explained with some mental gymnastics until it is Known and of course, we knew it all along. Merritt explicitly points out examples of this creeping determinism, in which scientists come to believe they predicted something they merely rationalized post-facto (hence the preeminence of genuinely a priori predictions that can’t be fudged).

Merritt’s book is also replete with examples of scientists failing to take alternatives seriously. This is natural: we have invested an enormous amount of time developing physical science to the point we have now reached; there is an enormous amount of background material that cannot simply be ignored or discarded. All too often, we are confronted with crackpot ideas that do exactly this. This makes us reluctant to consider ideas that sound crazy on first blush, and most of us will rightly display considerable irritation when asked to do so. For reasons both valid and not, MOND skirts this bondary. I certainly didn’t take it seriously myself, nor really considered it at all, until its predictions came true in my own data. It was so far below my radar that at first I did not even recognize that this is what had happened. But I did know I was surprised; what I was seeing did not make sense in terms of dark matter. So, from this perspective, I can see why other scientists are quick to dismiss it. I did so myself, initially. I was wrong to do so, and so are they.

A common failure mode is to ignore MOND entirely: despite dozens of confirmed predictions, it simply remains off the radar for many scientists. They seem never to have given it a chance, so they simply don’t pay attention when it gets something right. This is pure ignorance, which is not a strong foundation from which to render a scientific judgement.

Another common reaction is to acknowledge then dismiss. Merritt provides many examples where eminent scientists do exactly this with a construction like: “MOND correctly predicted X but…” where X is a single item, as if this is the only thing that [they are aware that] it does. Put this way, it is easy to dismiss – a common refrain I hear is “MOND fits rotation curves but nothing else.” This is a long-debunked falsehood that is asserted and repeated until it achieves the status of common knowledge within the echo chamber of scientists who refuse to think outside the dark matter box.

This is where the philosophy of science is crucial to finding our way forward. Merritt’s book illuminates how this is done. If you are reading these words, you owe it to yourself to read his book.

The Hubble Constant from the Baryonic Tully-Fisher Relation

The Hubble Constant from the Baryonic Tully-Fisher Relation

The distance scale is fundamental to cosmology. How big is the universe? is pretty much the first question we ask when we look at the Big Picture.

The primary yardstick we use to describe the scale of the universe is Hubble’s constant: the H0 in

v = H0 D

that relates the recession velocity (redshift) of a galaxy to its distance. More generally, this is the current expansion rate of the universe. Pick up any book on cosmology and you will find a lengthy disquisition on the importance of this fundamental parameter that encapsulates the size, age, critical density, and potential fate of the cosmos. It is the first of the Big Two numbers in cosmology that expresses the still-amazing fact that the entire universe is expanding.

Quantifying the distance scale is hard. Throughout my career, I have avoided working on it. There are quite enough, er, personalities on the case already.

AliceMadPeople

No need for me to add to the madness.

Not that I couldn’t. The Tully-Fisher relation has long been used as a distance indicator. It played an important role in breaking the stranglehold that H0 = 50 km/s/Mpc had on the minds of cosmologists, including myself. Tully & Fisher (1977) found that it was approximately 80 km/s/Mpc. Their method continues to provide strong constraints to this day: Kourkchi et al. find H0 = 76.0 ± 1.1(stat) ± 2.3(sys) km s-1 Mpc-1. So I’ve been happy to stay out of it.

Until now.

d8onl2_u8aetogk

I am motivated in part by the calibration opportunity provided by gas rich galaxies, in part by the fact that tension in independent approaches to constrain the Hubble constant only seems to be getting worse, and in part by a recent conference experience. (Remember when we traveled?) Less than a year ago, I was at a cosmology conference in which I heard an all-too-typical talk that asserted that the Planck H0 = 67.4 ± 0.5 km/s/Mpc had to be correct and everybody who got something different was a stupid-head. I’ve seen this movie before. It is the same community (often the very same people) who once insisted that H0 had to be 50, dammit. They’re every bit as overconfident as before, suffering just as much from confirmation bias (LCDM! LCDM! LCDM!), and seem every bit as likely to be correct this time around.

So, is it true? We have the data, we’ve just refrained from using it in this particular way because other people were on the case. Let’s check.

The big hassle here is not measuring H0 so much as quantifying the uncertainties. That’s the part that’s really hard. So all credit goes to Jim Schombert, who rolled up his proverbial sleeves and did all the hard work. Federico Lelli and I mostly just played the mother-of-all-jerks referees (I’ve had plenty of role models) by asking about every annoying detail. To make a very long story short, none of the items under our control matter at a level we care about, each making < 1 km/s/Mpc difference to the final answer.

In principle, the Baryonic Tully-Fisher relation (BTFR) helps over the usual luminosity-based version by including the gas, which extends application of the relation to lower mass galaxies that can be quite gas rich. Ignoring this component results in a mess that can only be avoided by restricting attention to bright galaxies. But including it introduces an extra parameter. One has to adopt a stellar mass-to-light ratio to put the stars and the gas on the same footing. I always figured that would make things worse – and for a long time, it did. That is no longer the case. So long as we treat the calibration sample that defines the BTFR and the sample used to measure the Hubble constant self-consistently, plausible choices for the mass-to-light ratio return the same answer for H0. It’s all relative – the calibration changes with different choices, but the application to more distant galaxies changes in the same way. Same for the treatment of molecular gas and metallicity. It all comes out in the wash. Our relative distance scale is very precise. Putting an absolute number on it simply requires a lot of calibrating galaxies with accurate, independently measured distances.

Here is the absolute calibration of the BTFR that we obtain:

btf_cep_trgb
The Baryonic Tully-Fisher relation calibrated with 50 galaxies with direct distance determinations from either the Tip of the Red Giant Branch method (23) or Cepheids (27).

In constructing this calibrated BTFR, we have relied on distance measurements made or compiled by the Extragalactic Distance Database, which represents the cumulative efforts of Tully and many others to map out the local universe in great detail. We have also benefited from the work of Ponomareva et al, which provides new calibrator galaxies not already in our SPARC sample. Critically, they also measure the flat velocity from rotation curves, which is a huge improvement in accuracy over the more readily available linewidths commonly employed in Tully-Fisher work, but is expensive to obtain so remains the primary observational limitation on this procedure.

Still, we’re in pretty good shape. We now have 50 galaxies with well measured distances as well as the necessary ingredients to construct the BTFR: extended, resolved rotation curves, HI fluxes to measure the gas mass, and Spitzer near-IR data to estimate the stellar mass. This is a huge sample for which to have all of these data simultaneously. Measuring distances to individual galaxies remains challenging and time-consuming hard work that has been done by others. We are not about to second-guess their results, but we can note that they are sensible and remarkably consistent.

There are two primary methods by which the distances we use have been measured. One is Cepheids – the same type of variable stars that Hubble used to measure the distance to spiral nebulae to demonstrate their extragalactic nature. The other is the tip of the red giant branch (TRGB) method, which takes advantage of the brightest red giants having nearly the same luminosity. The sample is split nearly 50/50: there are 27 galaxies with a Cepheid distance measurement, and 23 with the TRGB. The two methods (different colored points in the figure) give the same calibration, within the errors, as do the two samples (circles vs. diamonds). There have been plenty of mistakes in the distance scale historically, so this consistency is important. There are many places where things could go wrong: differences between ourselves and Ponomareva, differences between Cepheids and the TRGB as distance indicators, mistakes in the application of either method to individual galaxies… so many opportunities to go wrong, and yet everything is consistent.

Having  followed the distance scale problem my entire career, I cannot express how deeply impressive it is that all these different measurements paint a consistent picture. This is a credit to a large community of astronomers who have worked diligently on this problem for what seems like aeons. There is a temptation to dismiss distance scale work as having been wrong in the past, so it can be again. Of course that is true, but it is also true that matters have improved considerably. Forty years ago, it was not surprising when a distance indicator turned out to be wrong, and distances changed by a factor of two. That stopped twenty years ago, thanks in large part to the Hubble Space Telescope, a key goal of which had been to nail down the distance scale. That mission seems largely to have been accomplished, with small differences persisting only at the level that one expects from experimental error. One cannot, for example, make a change to the Cepheid calibration without creating a tension with the TRGB data, or vice-versa: both have to change in concert by the same amount in the same direction. That is unlikely to the point of wishful thinking.

Having nailed down the absolute calibration of the BTFR for galaxies with well-measured distances, we can apply it to other galaxies for which we know the redshift but not the distance. There are nearly 100 suitable galaxies available in the SPARC database. Consistency between them and the calibrator galaxies requires

H0 = 75.1 +/- 2.3 (stat) +/- 1.5 (sys) km/s/Mpc.

This is consistent with the result for the standard luminosity-linewidth version of the Tully-Fisher relation reported by Kourkchi et al. Note also that our statistical (random/experimental) error is larger, but our systematic error is smaller. That’s because we have a much smaller number of galaxies. The method is, in principle, more precise (mostly because rotation curves are more accurate than linewidhts), so there is still a lot to be gained by collecting more data.

Our measurement is also consistent with many other “local” measurements of the distance scale,

hubbletension1but not with “global” measurements. See the nice discussion by Telescoper and the paper from which it comes. A Hubble constant in the 70s is the answer that we’ve consistently gotten for the past 20 years by a wide variety of distinct methods, including direct measurements that are not dependent on lower rungs of the distance ladder, like gravitational lensing and megamasers. These are repeatable experiments. In contrast, as I’ve pointed out before, it is the “global” CMB-fitted value of the Hubble parameter that has steadily diverged from the concordance region that originally established LCDM.

So, where does this leave us? In the past, it was easy to dismiss a tension of this sort as due to some systematic error, because that happened all the time – in the 20th century. That’s not so true anymore. It looks to me like the tension is real.

 

Tracing the baryons in star forming galaxies

Tracing the baryons in star forming galaxies

Galaxies are big. Our own Milky Way contains about fifty billion solar masses of stars, and another ten billion of interstellar gas, roughly speaking. The average star is maybe half a solar mass, so crudely speaking, that’s one hundred billion stars. Give or take. For comparison, the population of the Earth has not quite reached eight billion humans. So if you gave each one of us our own personal starship, in order to visit every star in the Galaxy, each one of us would have to visit a dozen stars. Give or take. I’m getting old, so I call dibs on Proxima Centauri through Procyon.

Figure 1 shows a picture of NGC 628, a relatively nearby spiral galaxy. What you see here is mostly stars, along with some interstellar dust and ionized gas. In addition to those components, there are also stellar remnants left behind by dead stars (mostly white dwarfs, some neutron stars, and the occasional black hole). In the space between the stars resides colder forms of interstellar gas, including both atomic gas (individual atoms in space) and molecular gas (the cold, dense material from which new stars form). How much is there of each component?

ngc628_final
Fig 1. The spiral galaxy NGC 628. The continuum light of stars in contrasted by dark dust lanes and highlighted by pink pinpoints of Balmer line emission. These are regions of interstellar gas illuminated by the UV emission of short-lived, massive O stars. Not visible here is the interstellar atomic and molecular gas from which stars form.

The bulk of the normal mass (excluding dark matter) in big spiral galaxies like the Milky Way is stars and their remnants. But there is also diffuse material in the vast interstellar medium – the ample space between the stars. This includes dust and several distinct phases of gas – molecular, atomic, and ionized (plasma). The dust and plasma are easy to see, but don’t add up to much – a mere millions of solar masses each for the whole Milky Way. The atomic and molecular gas add up to a lot more, but cannot be seen optically.

Atomic gas can be traced by 21 cm emission from the spin-flip transition of atomic hydrogen using radio telescopes. This is commonly referred to with the spectroscopic notation “HI”. The HI mass – the mass of atomic hydrogen – is usually the second largest mass component in spirals, after stars. In dwarf galaxies, the atomic gas often outweighs the stars (Fig. 2).

MgMst
Fig 2. Gas mass vs. stellar mass for galaxies in the SPARC database (blue) and an independent sample selected from SDSS (grey) by Bradford. The line is the line of equality where gas mass and stellar mass are equal. The red point is the Milky Way. Like other bright spirals, it is more stars than gas. Among lower mass dwarf galaxies, the reverse is commonly true: those in the field have more gas than stars.

Stars and atomic (HI) gas are the big two. When it comes to star forming galaxies, more massive spirals are usually star dominated while less massive dwarfs are usually dominated by atomic gas. But what about molecular gas?

Molecular gas is important to the star formation process. It is the densest (a very relative term!) material in the interstellar medium, the place where cold gas can condense into the nuggets that sometimes form stars. How much of this necessary ingredient is there?

The bulk of the mass of molecular gas is in molecular hydrogen, H2. Spectroscopically, H2 is a really boring molecule. It has no transitions in wavelength regimes that are readily accessible to observation. So, unlike atomic hydrogen, which brazenly announces its presence throughout the universe via the 21 cm line, molecular hydrogen is nigh-on invisible.

So we use proxies. The most commonly employed proxy for tracing molecular gas mass is carbon monoxide. CO is one of many molecules that accompany the much more abundance molecular hydrogen, and CO produces emission features that are more readily accessible observationally in the mm wavelength range. That has made it the tracer of choice.

CO is far from an ideal tracer of mass. Carbon and oxygen are both trace elements compared to hydrogen, so the correspondence between CO emission and molecular gas mass depends on the relative abundance of both. If that sounds dodgy, it gets worse. It also depends on the interstellar radiation field, the opacity thereto (molecular gas is inevitably associated with dense clumps of dust that shield it from the ambient radiation), and the spatial overlap of the two components – CO and H2 thrive in similar but not identical regions of space. Hence, converting the observed intensity of CO into a molecular hydrogen mass is a highly sensitive procedure that we typically bypass by assuming it is a universal constant.

It’s astronomy. We do what we can.

People have obsessed long and hard about the CO-to-H2 conversion, so we do have a reasonable idea what it is. While many debates can be had over the details, we have a decent idea of what the molecular gas mass is in some galaxies, at least to a first approximation. Molecular gas is usually outweighed by atomic gas, but sometimes it is comparable. So we’d like to keep track of it for the mass budget.

LCOMHIMst
Fig 3. The mass in molecular hydrogen gas as a function of atomic hydrogen (left) and stellar mass (right) from xGASS. The dotted line is the line of equality; molecular gas is usually outweighed by both atomic gas and stars. The red line at right is where the molecular gas mass is 7% of the stellar mass.

Obtaining CO observations is expensive, and often impossible: there are a lot of star forming galaxies where it simply isn’t detected. So we presume there is molecular gas there – that’s where the stars form, but we can’t always see it. So it would be handy to have another proxy besides CO.

Atomic gas is a lousy proxy for molecular gas. The mass of one hardly correlates with the other (Fig. 3). The two phases coexist in a complex and ever-changing variable quasi-equilibrium, with the amount of each at any given moment subject to change so that a snapshot of many galaxies provides a big mess.

Fortunately, the molecular gas mass correlates better with other properties – notably star formation. This makes sense, because stars form from molecular gas. So in some appropriately averaged sense, one follows the other. Star formation can be traced in a variety of ways, like the Balmer emission in Fig. 1. We can see the stars forming and infer the amount of molecular gas required to fuel that star formation even if we can’t detect the gas directly (Fig. 4).

MH2SFRMst
Fig 4. The current star formation rate (left) and molecular gas mass (right) as a function of stellar mass. The grey and black points are from xGASS, with the black points being those where the current star formation rate is within a factor of two of the past average (i.e., the stellar mass divided by the age of the universe). Blue points are low surface brightness galaxies. These extend the relation at left to much lower mass, but are generally not detected in CO. The molecular gas at right (open squares) is inferred by the amount required to sustain the observed star formation.

I’ve done a lot of work on low surface brightness galaxies, a class of objects that have proven particularly difficult to detect in CO. They have low dust contents, low oxygen abundances, relatively hard interstellar radiation fields – all factors that mitigate against CO. Yet we do see them forming stars, sometimes just one O star at a time, and we know how much molecular gas it takes to do that. So we can use star formation as a proxy for molecular gas mass. This is probably no worse than using CO, and perhaps even better – or would be, if we didn’t have to rely on CO to calibrate it in the first place.

Accurate tracers of star formation are also somewhat expensive to obtain. There are situations in which we need an estimate for the molecular gas mass where we don’t have either CO or a measurement of the star formation rate. So… we need a proxy for the proxy. Fortunately, that is provided by the stellar mass.

The stellar mass of a star-forming galaxy correlates with both its molecular gas mass and its star formation rate (Figs. 3 and 4). This is not surprising. It takes molecules to form stars, and it takes star formation to build up stellar mass. Indeed, the stellar mass is the time-integral of the star formation rate, so a correlation between the two (as seen in the left panel of Fig. 4) is mathematically guaranteed.

This brings us to the seven percent solution. Going through all the calibration steps, the molecular gas mass is, on average, about 7% of the stellar mass (the red lines in Figs. 3 and 4). The uncertainties in this are considerable. I’ve tried to work this out previously, and typically came up with numbers in the 5 – 10% range. So it seems to be in there somewhere.

This is adequate for some purposes, but not for others. One thing I want it for is to keep track of the total mass budget of baryons in galaxies so that we can calibrate the Baryonic Tully-Fisher relation. For this purpose it is adequate since molecular gas ranks behind both stars and atomic gas in the mass budget of almost every rotating galaxy. If it is 5% or 10% instead of 7%, this is a difference of a few percent of something that is itself typically < 10% of the total, and often less. A few percent of a few percent is a good working definition of negligible – especially in astronomy.

On top of all that, we also have to keep track of the stuff that isn’t hydrogen – helium and everything else in the periodic table, which astronomers often refer to collectively as “metals.” This makes for all sorts of partially-deserved jokes – oxygen isn’t a metal! but it is number 3 in cosmic abundance after hydrogen and helium. Like many anachronisms, the practice has good historical precedent. Early efforts to measure the abundances of the chemical elements in stars first gave results for iron. As other elements were probed, their abundances followed a pattern that scaled pretty well with the abundance of iron relative to hydrogen. So once again we have a proxy – this time, the iron abundance being a stand-in for that of everything else. Hence the persistence of the terminology – the metallicity of a star is a shorthand for the fraction of its mass that is not hydrogen and helium.

And that fraction is small. We usually write the mass fractions of hydrogen, helium, and everything else (metals) as

X + Y + Z = 1

where X is the fraction of mass in hydrogen, Y that in helium, and Z is everything else. For the sun, Lodders gives X = 0.7389, Y = 0.2463, and Z = 0.0148. Do I believe all those significant digits? No. Is there a good reason for them to be there? Yes. So without delving into those details, let’s just note that the universe is about 3 parts hydrogen, one part helium, with a sprinkling of everything else. Everything else being all the elements in the periodic table that aren’t hydrogen or helium – all the carbon and nitrogen and oxygen and silicon and magnesium and noble gases and actual metals – these all add up to about 1.5% of the mass of the sun, which is typical of nearby stars. So you can see why they’re all just metals to many astronomers.

For the mass of gas in galaxies, we need to correct what we measure in hydrogen for the presence of helium and metals. We measure the mass of atomic hydrogen using the 21 cm line, but that’s just the hydrogen. There is a corresponding amount of helium and metals that goes along with it. So we estimate the mass fraction in hydrogen, X, and use divide by that to get the total mass: Mgas = MHI/X. We do the same for molecular gas, etc.

There are measurements of the metallicities of entire galaxies, but – you guessed it – this isn’t observationally cheap, and isn’t always available. So we need another proxy. Luckily for us, it turns out that once again there is a pretty good correlation of metallicity with stellar mass: galaxies with lots of stars have made lots of supernovae that have processed lots of material into metals. Most of it is still hydrogen, so this is a very subtle effect: 1/X = 1.34 for the tiniest dwarf, going up to about 1.4 for a galaxy like the Milky Way. Still, we know this happens, so we can account for it, at least in a statistical way.

For those who are curious about the details, or want the actual formulae to use, please refer to this AAS research note. Next time, I hope to discuss an application for all this.

The Other

The Other

I am a white American male. As such, I realize that there is no way for me to grasp and viscerally appreciate all the ways in which racism afflicts black Americans. Or, for that matter, all the ways in which sexism afflicts women. But I can acknowledge that these things exist. I can recognize when it happens. I’ve seen it happen to others, both friends and strangers. I can try not to be part of the problem.

It isn’t just black and white or male and female. There are so many other ways in which we classify and mistreat each other. Black Americans were enslaved; Native Americans were largely eradicated. It is easy to think of still more examples – religious heretics, colonized peoples, members of the LGBT community – anything that sets one apart as the Other. Being the Other makes one less than human and more akin to vermin that should be controlled or exterminated: clearly the attitude taken by Nazis towards Jews in occupied Europe.

When I was a child, my family moved around a lot. [It doesn’t matter why; there was no good reason.] We moved every other year. I was born in Oklahoma, but my only memory of it is from visiting relatives later: we moved to central Illinois when I was still a baby. We lived in a series of small towns – Decatur, Sullivan, made a brief detour to Escondido, California, then back to Shelbyville. My earliest memories are of the rich smell of the fertile Illinois landscape coming to life in springtime as my consciousness dawned in a beautiful wooded landscape about which I was infinitely curious. The shady forests and little creeks were as much my classrooms as the brick schoolhouses inhabited by teachers, friends, and bullies.

I was painfully, cripplingly shy as a child. It took a year to start to make new friends, and another to establish them. Then we would move away.

Bullies came more quickly than friends. Every bully wants to pick on others, but especially if they are different – the Other. I was different in so many ways. I was from somewhere else, an alien immigrant to each parochial little town. I was small for my age and young for my grade, having skipped first grade. I was an egghead, a nerd in a time where the only thing society seemed to value was size and strength. Worst of all, I did not attend the same little church that they did, so I was going to hell, and many  illiterate bible-thumping bullies seemed to take it as their religious duty to speed me on my way.

When I was 13, we moved to Flint, Michigan. We went from a tiny farm town to an urban industrial area the epitomizes “rust belt.” I could no longer see the stars at night because the sky was pink – a lurid, poisonous pink – from the lights of the nearby AC Spark Plugs factory (then an active facility in which I briefly worked; now a vast empty slab of concrete). I still wandered in the limited little woods wedged between the freeway and a golf course, but the creek there ran thick with the sheen of petrochemical runoff.

I became a part of the 1970s effort at desegregation. The white religious bigot bullies were replaced with black ghetto bullies. Some seemed to think it to be their duty to return the shit white people had given them by being shitty to white people whenever they could. I didn’t really get that at the time. To me, they were just bullies. Same old, same old. Their hatred for the Other was palpably the same.

But you know what? Most people aren’t bullies. Bullies are just the first in line to greet Others onto whom they hope to unload their own self-loathing. Given time, I met better people in each and every place I lived. And what I found, over and over again, is that people are people. There are craven, nasty people and their are extraordinary, wonderful people, and everything else you can imagine in between. I’ve lived in all-white neighborhoods and mostly black neighborhoods and pretty well integrated neighborhoods. I’ve seen differences in culture but zero evidence that one race is better or worse or even meaningfully different from the other. Both have a tendency to mistrust the Other that seems deeply ingrained in human nature. We aren’t quite human to each other until we’re personally known. Once you meet the Other, they cease to be the Other and become an individual with a name and a personality. I suspect that’s what people mean when they claim not to see color – it’s not that they cease to see it, but for the people they’ve actually met, it ceases to be their defining characteristic.

And yet we persist in making implicitly racist assumptions. To give just one tiny example, a few years back a friend was helping to organize the Larchmere Porch Fest, and asked my wife and I to help. This is a wonderful event in which people in the Larchmere neighborhood offer their porches as stages for musical performances. One can wander up and down and hear all manner of music. On this occasion, I wound up helping to set up one porch for a performance by Obnox. I realized that some electricity would be needed, so knocked on the homeowner’s door. A woman appeared, and after a brief discussion, she provided an extension cord with a pink, Barbie-themed power strip that we threaded through an open window. Lamont Thomas and his drummer arrived, and set up went fairly smoothly, but he thought of something else, so also knocked on the door. I don’t remember what he was looking for, but I remember the reaction of the woman upon opening the door. Lamont is a tall, imposing black man. Her eyes got as big as saucers. She closed the door without a word. We heard the -snick- of the lock and her retreating footsteps. Lamont looked at the door that had been shut in his face, then looked at me and spoke softly: “My lyrics are kinda… raw. Is that going to be a problem?” I could only shrug. “She signed up for this,” I replied.

I don’t know what went through her mind. I would guess that like a lot of white people in the U.S., she had conveniently forgotten that black people exist – or at least, weren’t a presence in her regular circle of life. So when she chose to participate in a positive civic activity, in this case porch fest, it simply hadn’t occurred to her that black people might be involved. Who would have guessed that some musicians might be black!

That episode is but one tiny example of the pervasive, reflexive fear of the Other that still pervades American culture. More generally, I marvel at the human potential that we must have wasted in this way. The persecution of minorities, both ethnic and religious, the suppression of novel thought outside the mainstream, the utter disregard for women in far too many societies… For every Newton, for every Einstein, for every brilliant person who became famous for making a positive impact on the world, how many comparably brilliant people found themselves in circumstances that prevented them from making the contributions that they might otherwise have made? Einstein happened to be visiting the U.S. when Hitler came to power, and wisely declined to return home to Germany. He was already famous, so it was possible to financially arrange to keep him on. How might it have gone if the timing were otherwise? How many were less fortunate? What have we lost? Why do we continue to throw away so much human potential?

Obnox_larchmere2014
Obnox performs at the Larchmere Porch Fest in 2014.