In science, all new and startling facts must encounter in sequence the responses

1. It is not true!

2. It is contrary to orthodoxy.

3. We knew it all along.

Louis Agassiz (circa 1861)

This expression exactly depicts the progression of the radial acceleration relation. Some people were ahead of this curve, others are still behind it, but it quite accurately depicts the mass sociology. This is how we react to startling new facts.

For quotation purists, I’m not sure exactly what the original phrasing was. I have paraphrased it to be succinct and have substituted orthodoxy for religion, because even scientists can have orthodoxies: holy cows that must not be slaughtered.

I might even add a precursor stage zero to the list above:

0. It goes unrecognized.

This is to say, that if a new fact is sufficiently startling, we don’t just disbelieve it (stage 1); at first we fail to see it at all. We lack the cognitive framework to even recognize how important it is. An example is provided by the 1941 detection of the microwave background by Andrew McKellar. In retrospect, this is as persuasive as the 1964 detection of Penzias and Wilson to which we usually ascribe the discovery. At the earlier time, there was simply no framework for recognizing what it was that was being detected. It appears to me that P&Z didn’t know what they were looking at either until Peebles explained it to them.

The radial acceleration relation was first posed as the mass discrepancy-acceleration relation. They’re fundamentally the same thing, just plotted in a slightly different way. The mass discrepancy-acceleration relation shows the ratio of total mass to that which is visible. This is basically the ratio of the observed acceleration to that predicted by the observed baryons. This is useful to see how much dark matter is needed, but by construction the axes are not independent, as both measured quantities are used in forming the ratio.

The radial acceleration relation shows independent observations along each axis: observed vs. predicted acceleration. Though measured independently, they are not physically independent, as the baryons contribute some to the total observed acceleration – they do have mass, after all. One can construct a halo acceleration relation by subtracting the baryonic contribution away from the total; in principle the remainders are physically independent. Unfortunately, the axes again become observationally codependent, and the uncertainties blow up, especially in the baryon dominated regime. Which of these depictions is preferable depends a bit on what you’re looking to see; here I just want to note that they are the same information packaged somewhat differently.

To the best of my knowledge, the first mention of the mass discrepancy-acceleration relation in the scientific literature is by Sanders (1990). Its existence is explicit in MOND (Milgrom 1983), but here it is possible to draw a clear line between theory and data. I am only speaking of the empirical relation as it appears in the data, irrespective of anything specific to MOND.

I met Bob Sanders, along with many other talented scientists, in a series of visits to the University of Groningen in the early 1990s. Despite knowing him and having talked to him about rotation curves, I was unaware that he had done this.

Stage 0: It goes unrecognized.

For me, stage one came later in the decade at the culmination of a several years’ campaign to examine the viability of the dark matter paradigm from every available perspective. That’s a long paper, which nevertheless drew considerable praise from many people who actually read it. If you go to the bother of reading it today, you will see the outlines of many issues that are still debated and others that have been forgotten (e.g., the fine-tuning issues).

Around this time (1998), the dynamicists at Rutgers were organizing a meeting on galaxy dynamics, and asked me to be one of the speakers. I couldn’t possibly discuss everything in the paper in the time allotted, so was looking for a way to show the essence of the challenge the data posed. Consequently, I reinvented the wheel, coming up with the mass discrepancy-acceleration relation. Here I show the same data that I had then in the form of the radial acceleration relation:

The Radial Acceleration Relation from the data in McGaugh (1999). Plot credit: Federico Lelli. (There is a time delay in publication: the 1998 meeting’s proceedings appeared in 1999.)

I recognize this version of the plot as having been made by Federico Lelli. I’ve made this plot many times, but this is version I came across first, and it is better than mine in that the opacity of the points illustrates where the data are concentrated. I had been working on low surface brightness galaxies; these have low accelerations, so that part of the plot is well populated.

The data show a clear correlation. By today’s standards, it looks crude. Going on what we had then, it was fantastic. Correlations practically never look this good in extragalactic astronomy, and they certainly don’t happen by accident. Low quality data can hide a correlation – uncertainties cause scatter – but they can’t create a correlation where one doesn’t exist.

This result was certainly startling if not as new as I then thought. That’s why I used the title How Galaxies Don’t Form. This was contrary to our expectations, as I had explained in exhaustive detail in the long paper and revisit in a recent review for philosophers and historians of science.

I showed the same result later that year (1998) at a meeting on the campus of the University of Maryland where I was a brand new faculty member. It was a much shorter presentation, so I didn’t have time to justify the context or explain much about the data. Contrary to the reception at Rutgers where I had adequate time to speak, the hostility of the audience to the result was palpable, their stony silence eloquent. They didn’t want to believe it, and plenty of people got busy questioning the data.

Stage 1: It is not true.

I spent the next five years expanding and improving the data. More rotation curves became available thanks to the work of many, particularly Erwin de Blok, Marc Verheijen, and Rob Swaters. That was great, but the more serious limitation was how well we could measure the stellar mass distribution needed to predict the baryonic acceleration.

The mass models we could build at the time were based on optical images. A mass model takes the observed light distribution, assigns a mass-to-light ratio, and makes a numerical solution of the Poisson equation to obtain the the gravitational force corresponding to the observed stellar mass distribution. This is how we obtain the stellar contribution to the predicted baryonic force; the same procedure is applied to the observed gas distribution. The blue part of the spectrum is the best place in which to observe low contrast, low surface brightness galaxies as the night sky is darkest there, at least during new moon. That’s great for measuring the light distribution, but what we want is the stellar mass distribution. The mass-to-light ratio is expected to have a lot of scatter in the blue band simply from the happenstance of recent star formation, which makes bright blue stars that are short-lived. If there is a stochastic uptick in the star formation rate, then the mass-to-light ratio goes down because there are lots of bright stars. Wait a few hundred million years and these die off, so the mass-to-light ratio gets bigger (in the absence of further new star formation). The time-integrated stellar mass may not change much, but the amount of blue light it produces does. Consequently, we expect to see well-observed galaxies trace distinct lines in the radial acceleration plane, even if there is a single universal relation underlying the phenomenon. This happens simply because we expect to get M*/L wrong from one galaxy to the next: in 1998, I had simply assumed all galaxies had the same M*/L for lack of any better prescription. Clearly, a better prescription was warranted.

In those days, I traveled through Tucson to observe at Kitt Peak with some frequency. On one occasion, I found myself with a few hours to kill between coming down from the mountain and heading to the airport. I wandered over to the Steward Observatory at the University of Arizona to see who I might see. A chance meeting in the wild west: I encountered Eric Bell and Roelof de Jong, who were postdocs there at the time. I knew Eric from his work on the stellar populations of low surface brightness galaxies, an interest closely aligned with my own, and Roelof from my visits to Groningen.

As we got to talking, Eric described to me work they were doing on stellar populations, and how they thought it would be possible to break the age-metallicity degeneracy using near-IR colors in addition to optical colors. They were mostly focused on improving the age constraints on stars in LSB galaxies, but as I listened, I realized they had constructed a more general, more powerful tool. At my encouragement (read their acknowledgements), they took on this more general task, ultimately publishing the classic Bell & de Jong (2001). In it, they built a table that enabled one to look up the expected mass-to-light ratio of a complex stellar population – one actively forming stars – as a function of color. This was a big step forward over my educated guess of a constant mass-to-light ratio: there was now a way to use a readily observed property, color, to improve the estimated M*/L of each galaxy in a well-calibrated way.

Combining the new stellar population models with all the rotation curves then available, I obtained an improved mass discrepancy-acceleration relation:

The Radial Acceleration Relation from the data in McGaugh (2004); version using Bell’s stellar population synthesis models to estimate M*/L (see Fig. 5 for other versions). Plot credit: Federico Lelli.

Again, the relation is clear, but with scatter. Even with the improved models of Bell & de Jong, some individual galaxies have M*/L that are wrong – that’s inevitable in this game. What you cannot know is which ones! Note, however, that there are now 74 galaxies in this plot, and almost all of them fall on top of each other where the point density is large. There are some obvious outliers; those are presumably just that: the trees that fall outside the forest because of the expected scatter in M*/L estimates.

I tried a variety of prescriptions for M*/L in addition to that of Bell & de Jong. Though they differed in texture, they all told a consistent story. A relation was clearly present; only its detailed form varied with the adopted prescription.

The prescription that minimized the scatter in the relation was the M*/L obtained in MOND fits. That’s a tautology: by construction, a MOND fit finds the M*/L that puts a galaxy on this relation. However, we can generalize the result. Maybe MOND is just a weird, unexpected way of picking a number that has this property; it doesn’t have to be the true mass-to-light ratio in nature. But one can then define a ratio Q

Equation 21 of McGaugh (2004).

that relates the “true” mass-to-light ratio to the number that gives a MOND fit. They don’t have to be identical, but MOND does return M*/L that are reasonable in terms of stellar populations, so Q ~ 1. Individual values could vary, and the mean could be a bit more or less than unity, but not radically different. One thing that impressed me at the time about the MOND fits (most of which were made by Bob Sanders) was how well they agreed with the stellar population models, recovering the correct amplitude, the correct dependence on color in different bandpasses, and also giving the expected amount of scatter (more in the blue than in the near-IR).

Fig. 7 of McGaugh (2004). Stellar mass-to-light ratios of galaxies in the blue B-band (top) and near-IR K-band (bottom) as a function of BV color for the prescription of maximum disk (left) and MOND (right). Each point represents one galaxy for which the requisite data were available at the time. The line represents the mean expectation of stellar population synthesis models from Bell et al. (2003). These lines are completely independent of the data: neither the normalization nor the slope has been fit to the dynamical data. The red points are due to Sanders & Verheijen (1998); note the weak dependence of M*/L on color in the near-IR.

The obvious interpretation is that we should take seriously a theory that obtains good fits with a single free parameter that checks out admirably well with independent astrophysical constraints, in this case the M*/L expected for stellar populations. But I knew many people would not want to do that, so I defined Q to generalize to any M*/L in any (dark matter) context one might want to consider.

Indeed, Q allows us to write a general expression for the rotation curve of the dark matter halo (essentially the HAR alluded to above) in terms of that of the stars and gas:

Equation 22 of McGaugh (2004).

The stars and the gas are observed, and μ is the MOND interpolation function assumed in the fit that leads to Q. Except now the interpolation function isn’t part of some funny new theory; it is just the shape of the radial acceleration relation – a relation that is there empirically. The only fit factor between these data and any given model is Q – a single number of order unity. This does leave some wiggle room, but not much.

I went off to a conference to describe this result. At the 2006 meeting Galaxies in the Cosmic Web in New Mexico, I went out of my way at the beginning of the talk to show that even if we ignore MOND, this relation is present in the data, and it provides a strong constraint on the required distribution of dark matter. We may not know why this relation happens, but we can use it, modulo only the modest uncertainty in Q.

Having bent over backwards to distinguish the data from the theory, I was disappointed when, immediately at the end of my talk, prominent galaxy formation theorist Anatoly Klypin loudly shouted

“We don’t have to explain MOND!”

It stinks of MOND!

But you do have to explain the data. The problem was and is that the data look like MOND. It is easy to conflate one with the other; I have noticed that a lot of people have trouble keeping the two separate. Just because you don’t like the theory doesn’t mean that the data are wrong. What Anatoly was saying was that

2. It is contrary to orthodoxy.

Despite phrasing the result in a way that would be useful to galaxy formation theorists, they did not, by and large, claim to explain it at the time – it was contrary to orthodoxy so didn’t need to be explained. Looking at the list of papers that cite this result, the early adopters were not the target audience of galaxy formation theorists, but rather others citing it to say variations of “no way dark matter explains this.”

At this point, it was clear to me that further progress required a better way to measure the stellar mass distribution. Looking at the stellar population models, the best hope was to build mass models from near-infrared rather than optical data. The near-IR is dominated by old stars, especially red giants. Galaxies that have been forming stars actively for a Hubble time tend towards a quasi-equilibrium in which red giants are replenished by stellar evolution at about the same rate they move on to the next phase. One therefore expects the mass-to-light ratio to be more nearly constant in the near-IR. Not perfectly so, of course, but a 2 or 3 micron image is as close to a map of the stellar mass of a galaxy as we’re likely to get.

Around this time, the University of Maryland had begun a collaboration with Kitt Peak to build a big infrared camera, NEWFIRM, for the 4m telescope. Rob Swaters was hired to help write software to cope with the massive data flow it would produce. The instrument was divided into quadrants, each of which had a field of view sufficient to hold a typical galaxy. When it went on the telescope, we developed an efficient observing method that I called “four-shooter”, shuffling the target galaxy from quadrant to quadrant so that in processing we could remove the numerous instrumental artifacts intrinsic to its InSb detectors. This eventually became one of the standard observing modes in which the instrument was operated.

NEWFIRM in the lab in Tucson. Most of the volume is for cryogenics: the IR detectors are heliumcooled to 30 K. Partial student for scale.

I was optimistic that we could make rapid progress, and at first we did. But despite all the work, despite all the active cooling involved, we were still on the ground. The night sky was painfully bright in the IR. Indeed, the thermal component dominated, so we could observe during full moon. To an observer of low surface brightness galaxies attuned to any hint of scattered light from so much as a crescent moon, I cannot describe how discombobulating it was to walk outside the dome and see the full fricking moon. So bright. So wrong. And that wasn’t even the limiting factor: the thermal background was.

We had hit a surface brightness wall, again. We could do the bright galaxies this way, but the LSBs that sample the low acceleration end of the radial acceleration relation were rather less accessible. Not inaccessible, but there was a better way.

The Spitzer Space Telescope was active at this time. Jim Schombert and I started winning time to observe LSB galaxies with it. We discovered that space is dark. There was no atmosphere to contend with. No scattered light from the clouds or the moon or the OH lines that afflict that part of the sky spectrum. No ground-level warmth. The data were fantastic. In some sense, they were too good: the biggest headache we faced was blotting out all the background galaxies that shown right through the optically thin LSB galaxies.

Still, it took a long time to collect and analyze the data. We were starting to get results by the early-teens, but it seemed like it would take forever to get through everything I hoped to accomplish. Fortunately, when I moved to Case Western, I was able to hire Federico Lelli as a postdoc. Federico’s involvement made all the difference. After many months of hard, diligent, and exacting work, he constructed what is now the SPARC database. Finally all the elements were in place to construct an empirical radial acceleration relation with absolutely minimal assumptions about the stellar mass-to-light ratio.

In parallel with the observational work, Jim Schombert had been working hard to build realistic stellar population models that extended to the 3.6 micron band of Spitzer. Spitzer had been built to look redwards of this, further into the IR. 3.6 microns was its shortest wavelength passband. But most models at the time stopped at the K-band, the 2.2 micron band that is the reddest passband that is practically accessible from the ground. They contain pretty much the same information, but we still need to calculate the band-specific value of M*/L.

Being a thorough and careful person, Jim considered not just the star formation history of a model stellar population as a variable, and not just its average metallicity, but also the metallicity distribution of its stars, making sure that these were self-consistent with the star formation history. Realistic metallicity distributions are skewed; it turn out that this subtle effect tends to counterbalance the color dependence of the age effect on M*/L in the near-IR part of the spectrum. The net results is that we expect M*/L to be very nearly constant for all late type galaxies.

This is the best possible result. To a good approximation, we expected all of the galaxies in the SPARC sample to have the same mass-to-light ratio. What you see is what you get. No variable M*/L, no equivocation, just data in, result out.

We did still expect some scatter, as that is an irreducible fact of life in this business. But even that we expected to be small, between 0.1 and 0.15 dex (roughly 25 – 40%). Still, we expected the occasional outlier, galaxies that sit well off the main relation just because our nominal M*/L didn’t happen to apply in that case.

One day as I walked past Federico’s office, he called for me to come look at something. He had plotted all the data together assuming a single M*/L. There… were no outliers. The assumption of a constant M*/L in the near-IR didn’t just work, it worked far better than we had dared to hope. The relation leapt straight out of the data:

The Radial Acceleration Relation from the data in McGaugh et al. (2016). Plot credit: Federico Lelli.

Over 150 galaxies, with nearly 2700 resolved measurements within each galaxy, each with their own distinctive mass distribution, all pile on top of each other without effort. There was plenty of effort in building the database, but once it was there, the result appeared, no muss, no fuss. No fitting or fiddling. Just the measurements and our best estimate of the mean M*/L, applied uniformly to every individual galaxy in the sample. The scatter was only 0.12 dex, within the range expected from the population models.

No MOND was involved in the construction of this relation. It may look like MOND, but we neither use MOND nor need it in any way to see the relation. It is in the data. Perhaps this is the sort of result for which we would have to invent MOND if it did not already exist. But the dark matter paradigm is very flexible, and many papers have since appeared that claim to explain the radial acceleration relation. We have reached

3. We knew it all along.

On the one hand, this is good: the community is finally engaging with a startling fact that has been pointedly ignored for decades. On the other hand, many of the claims to explain the radial acceleration relation are transparently incorrect on their face, being nothing more than elaborations of models I considered and discarded as obviously unworkable long ago. They do not provide a satisfactory explanation of the predictive power of MOND, and inevitably fail to address important aspects of the problem, like disk stability. Rather than grapple with the deep issues the new and startling fact poses, it has become fashionable to simply assert that one’s favorite model explains the radial acceleration relation, and does so naturally.

There is nothing natural about the radial acceleration relation in the context of dark matter. Indeed, it is difficult to imagine a less natural result – hence stages one and two. So on the one hand, I welcome the belated engagement, and am willing to consider serious models. On the other hand, if someone asserts that this is natural and that we expected it all along, then the engagement isn’t genuine: they’re just fooling themselves.

Early Days. This was one of Vera Rubin’s favorite expressions. I always had a hard time with it, as many things are very well established. Yet it seems that we have yet to wrap our heads around the problem. Vera’s daughter, Judy Young, once likened the situation to the parable of the blind men and the elephant. Much is known, yes, but the problem is so vast that each of us can perceive only a part of the whole, and the whole may be quite different from the part that is right before us.

So I guess Vera is right as always: these remain Early Days.

8 thoughts on “A brief history of the Radial Acceleration Relation

  1. Hi Stacy,
    Doesn’t the RAR just tell us that Newton’s law is simply wrong from the start (ie: g=GM/r^2 is an approximation). If the law was correct, we would simply have gbar=gobs. What the RAR tells us is that, as the acceleration scale gets smaller, the Newtonian equation deviates more and more from the real equation. Therefore, it would be a mistake to use g=GM/r^2 in our computation of a0 because that equation is an approximation. Am I stating the obvious here ?
    Patrick

    Like

  2. Yes and no. The g= GM/r^2 is an approximation to a full solution of the Poisson equation, which in turn is an approximation to General Relativity, which itself is presumably an approximation of some deeper theory. (That last part is taken for granted by those who work on quantum gravity but is heresy to most cosmologists.) In the context of galaxy dynamics, indeed we should have gobs=gbar if there were no funny business. If the funny business is dark matter, then the question is ill-posed: there is no reason for there to be an a0, much less use it in the computation. In MOND, it has a specific role that makes exactly this connection, so its use is entirely appropriate. The question the becomes what underlying theory MOND is approximating.

    Like

    1. The Bekenstein/TeVes interpolating function gives: gobs=gbar+sqrt(gbar*a0), this matches nicely the RAR curve, so one can say that the RAR curve is naturaly explained by MOND. But unfortunately this interpolating function does not work on the solar system because sqrt(gbar*a0) is larger than the constraints on gbar. This is true if we assume that gbar=GM/r^2 (Newton’s law) but what if instead we rewrite Newton’s law and postulate that gbar=gobs=GM/r^2 + sqrt(GM*a0/r^2) wouldn’t that solve the problem ? The RAR curve would then disappear and we would simply have gbar=gobs. So the real equation would be gbar=gobs=GM/r^2+sqrt(GM*a0/r^2) not gbar=GM/r^2. The actual RAR curve just shows us the deviation between Newton’s law and the real equation. Does this make any sense ?

      Like

      1. Yes, the RAR curve shows us the difference between Newtonian case and reality. There are a number of ways in which one could write an equation that is acceptable to the data, but not an arbitrary number. There is nothing special about the interpolation function Bekenstein chose. The so-called simple function fits the galaxy data well, but over-predicts solar system effects. That’s why I came up with the equation I’ve been using; it is indistinguishable from the simple function on galaxy scales but converges to Newton much more rapidly on solar system scales. I don’t see any reason to obsess about any particular functional form until there is a good motivation to do so; ie., a theory that predicts and requires this but not that. All we know so far is what the interpolation function has to look like, not where it comes from.

        Like

  3. I was interested to read this interview in “Quanta”: https://www.quantamagazine.org/in-mexico-cosmologist-hunts-for-cracks-in-einsteins-gravity-theory-20220223/

    Perhaps one benefit of setting up new facilities in countries like Mexico where there is no long tradition of cosmology is being less affected by long-held ideas. Teleparallel gravity seems to have passed its first test by being able to predict the CMB pattern, but as Celia Escamilla-Rivera says.the JWST will provide essential data on early galaxy formation which will give us much better tests of alternative theories of gravitation.

    Like

  4. Since there is no new physics in the Poisson equation and g= GM/r^2 is an approximation to a full solution of the Poisson equation, are there graphs showing the “Poisson + Newtonian RAR”?
    I know it’s not easy to get, but it would be really useful to look at that first before discussing new physics…

    Like

  5. Being no expert at all at the RAR, and watching recently the online SISSA cosmology course on Youtube, there they mention that the RAR relation has a radial dependence (so no universal) and this can be incorporated by some DM scaling relations (relevant part here: https://youtu.be/pgIhuLHx_98?list=PLe9EzUPIhHubf_m-F7eK10t7A4MIg4fIu&t=1685). From what I get, the claimed r-dependence comes from the scatter.

    My understanding from the post here, is that actually the scatter has to do with the modelling of the M/L ratio, so it’s not a characteristic property of the RAR, right?

    Like

  6. As comments on all posts before this one are closed, I will mention here that the EDGES result discussed in https://tritonstation.com/2018/08/09/the-next-cosmic-frontier-21cm-absorption-at-high-redshift/ has not been confirmed by more recent measurements https://www.quantamagazine.org/in-new-experiment-astronomers-see-no-sign-of-cosmic-dawn-20220228/

    Correction for background radiation in these measurements is always difficult and it may be that in this case the dip was an artifact caused by the correction process.

    Like

Comments are closed.