What we have here is a failure to communicate

What we have here is a failure to communicate

Kuhn noted that as paradigms reach their breaking point, there is a divergence of opinions between scientists about what the important evidence is, or what even counts as evidence. This has come to pass in the debate over whether dark matter or modified gravity is a better interpretation of the acceleration discrepancy problem. It sometimes feels like we’re speaking about different topics in a different language. That’s why I split the diagram version of the dark matter tree as I did:

Evidence indicating acceleration discrepancies in the universe and various flavors of hypothesized solutions.

Astroparticle physicists seem to be well-informed about the cosmological evidence (top) and favor solutions in the particle sector (left). As more of these people entered the field in the ’00s and began attending conferences where we overlapped, I recognized gaping holes in their knowledge about the dynamical evidence (bottom) and related hypotheses (right). This was part of my motivation to develop an evidence-based course1 on dark matter, to try to fill in the gaps in essential knowledge that were obviously being missed in the typical graduate physics curriculum. Though popular on my campus, not everyone in the field has the opportunity to take this course. It seems that the chasm has continued to grow, though not for lack of attempts at communication.

Part of the problem is a phase difference: many of the questions that concern astroparticle physicists (structure formation is a big one) were addressed 20 years ago in MOND. There is also a difference in texture: dark matter rarely predicts things but always explains them, even if it doesn’t. MOND often nails some predictions but leaves other things unexplained – just a complete blank. So they’re asking questions that are either way behind the curve or as-yet unanswerable. Progress rarely follows a smooth progression in linear time.

I have become aware of a common construction among many advocates of dark matter to criticize “MOND people.” First, I don’t know what a “MOND person” is. I am a scientist who works on a number of topics, among them both dark matter and MOND. I imagine the latter makes me a “MOND person,” though I still don’t really know what that means. It seems to be a generic straw man. Users of this term consistently paint such a luridly ridiculous picture of what MOND people do or do not do that I don’t recognize it as a legitimate depiction of myself or of any of the people I’ve met who work on MOND. I am left to wonder, who are these “MOND people”? They sound very bad. Are there any here in the room with us?

I am under no illusions as to what these people likely say when I am out of ear shot. Someone recently pointed me to a comment on Peter Woit’s blog that I would not have come across on my own. I am specifically named. Here is a screen shot:

From a reply to a post of Peter Woit on December 8, 2022. I omit the part about right-handed neutrinos as irrelevant to the discussion here.

This concisely pinpoints where the field2 is at, both right and wrong. Let’s break it down.

let me just remind everyone that the primary reason to believe in the phenomenon of cold dark matter is the very high precision with which we measure the CMB power spectrum, especially modes beyond the second acoustic peak

This is correct, but it is not the original reason to believe in CDM. The history of the subject matters, as we already believed in CDM quite firmly before any modes of the acoustic power spectrum of the CMB were measured. The original reasons to believe in cold dark matter were (1) that the measured, gravitating mass density exceeds the mass density of baryons as indicated by BBN, so there is stuff out there with mass that is not normal matter, and (2) large scale structure has grown by a factor of 105 from the very smooth initial condition indicated initially by the nondetection of fluctuations in the CMB, while normal matter (with normal gravity) can only get us a factor of 103 (there were upper limits excluding this before there was a detection). Structure formation additionally imposes the requirement that whatever the dark matter is moves slowly (hence “cold”) and does not interact via electromagnetism in order to evade making too big an impact on the fluctuations in the CMB (hence the need, again, for something non-baryonic).

When cold dark matter became accepted as the dominant paradigm, fluctuations in the CMB had not yet been measured. The absence of observable fluctuations at a larger level sufficed to indicate the need for CDM. This, together with Ωm > Ωb from BBN (which seemed the better of the two arguments at the time), sufficed to convince me, along with most everyone else who was interested in the problem, that the answer had3 to be CDM.

This all happened before the first fluctuations were observed by COBE in 1992. By that time, we already believed firmly in CDM. The COBE observations caused initial confusion and great consternation – it was too much! We actually had a prediction from then-standard SCDM, and it had predicted an even lower level of fluctuations than what COBE observed. This did not cause us (including me) to doubt CDM (thought there was one suggestion that it might be due to self-interacting dark matter); it seemed a mere puzzle to accommodate, not an anomaly. And accommodate it we did: the power in the large scale fluctuations observed by COBE is part of how we got LCDM, albeit only a modest part. A lot of younger scientists seem to have been taught that the power spectrum is some incredibly successful prediction of CDM when in fact it has surprised us at nearly every turn.

As I’ve related here before, it wasn’t until the end of the century that CMB observations became precise enough to provide a test that might distinguish between CDM and MOND. That test initially came out in favor of MOND – or at least in favor of the absence of dark matter: No-CDM, which I had suggested as a proxy for MOND. Cosmologists and dark matter advocates consistently omit this part of the history of the subject.

I had hoped that cosmologists would experience the same surprise and doubt and reevaluation that I had experienced when MOND cropped up in my own data when it cropped up in theirs. Instead, they went into denial, ignoring the successful prediction of the first-to-second peak amplitude ratio, or, worse, making up stories that it hadn’t happened. Indeed, the amplitude of the second peak was so surprising that the first paper to measure it omitted mention of it entirely. Just didn’t talk about it, let alone admit that “Gee, this crazy prediction came true!” as I had with MOND in LSB galaxies. Consequently, I decided that it was better to spend my time working on topics where progress could be made. This is why most of my work on the CMB predates “modes beyond the second peak” just as our strong belief in CDM also predated that evidence. Indeed, communal belief in CDM was undimmed when the modes defining the second peak were observed, despite the No-CDM proxy for MOND being the only hypothesis to correctly predict it quantitatively a priori.

That said, I agree with clayton’s assessment that

CDM thinks [the second and third peak] should be about the same

That this is the best evidence now is both correct and a much weaker argument than it is made out to be. It sounds really strong, because a formal fit to the CMB data require a dark matter component at extremely high confidence – something approaching 100 sigma. This analysis assumes that dark matter exist. It does not contemplate that something else might cause the same effect, so all it really does, yet again, is demonstrate that General Relativity cannot explain cosmology when restricted to the material entities we concretely know to exist.

Given the timing, the third peak was not a strong element of my original prediction, as we did not yet have either a first or second peak. We hadn’t yet clearly observed peaks at all, so what I was doing was pretty far-sighted, but I wasn’t thinking that far ahead. However, the natural prediction for the No-CDM picture I was considering was indeed that the third peak should be lower than the second, as I’ve discussed before.

The No-CDM model (blue line) that correctly predicted the amplitude of the second peak fails to predict that of the third. Data from the Planck satellite; model line from McGaugh (2004); figure from McGaugh (2015).

In contrast, in CDM, the acoustic power spectrum of the CMB can do a wide variety of things:

Acoustic power spectra calculated for the CMB for a variety of cosmic parameters. From Dodelson & Hu (2002).

Given the diversity of possibilities illustrated here, there was never any doubt that a model could be fit to the data, provided that oscillations were observed as expected in any of the theories under consideration here. Consequently, I do not find fits to the data, though excellent, to be anywhere near as impressive as commonly portrayed. What does impress me is consistency with independent data.

What impresses me even more are a priori predictions. These are the gold standard of the scientific method. That’s why I worked my younger self’s tail off to make a prediction for the second peak before the data came out. In order to make a clean test, you need to know what both theories predict, so I did this for both LCDM and No-CDM. Here are the peak ratios predicted before there were data to constrain them, together with the data that came after:

The ratio of the first-to-second (left) and second-to-third peak (right) amplitude ratio in LCDM (red) and No-CDM (blue) as predicted by Ostriker & Steinhardt (1995) and McGaugh (1999). Subsequent data as labeled.

The left hand panel shows the predicted amplitude ratio of the first-to-second peak, A1:2. This is the primary quantity that I predicted for both paradigms. There is a clear distinction between the predicted bands. I was not unique in my prediction for LCDM; the same thing can be seen in other contemporaneous models. All contemporaneous models. I was the only one who was not surprised by the data when they came in, as I was the only one who had considered the model that got the prediction right: No-CDM.

The same No-CDM model fails to correctly predict the second-to-third peak ratio, A2:3. It is, in fact, way off, while LCDM is consistent with A2:3, just as Clayton says. This is a strong argument against No-CDM, because No-CDM makes a clear and unequivocal prediction that it gets wrong. Clayton calls this

a stone-cold, qualitative, crystal clear prediction of CDM

which is true. It is also qualitative, so I call it weak sauce. LCDM could be made to fit a very large range of A2:3, but it had already got A1:2 wrong. We had to adjust the baryon density outside the allowed range in order to make it consistent with the CMB data. The generous upper limit that LCDM might conceivably have predicted in advance of the CMB data was A1:2 < 2.06, which is still clearly less than observed. For the first years of the century, the attitude was that BBN had been close, but not quite right – preference being given to the value needed to fit the CMB. Nowadays, BBN and the CMB are said to be in great concordance, but this is only true if one restricts oneself to deuterium measurements obtained after the “right” answer was known from the CMB. Prior to that, practically all of the measurements for all of the important isotopes of the light elements, deuterium, helium, and lithium, all concurred that the baryon density Ωbh2 < 0.02, with the consensus value being Ωbh2 = 0.0125 ± 0.0005. This is barely half the value subsequently required to fit the CMBbh2 = 0.0224 ± 0.0001). But what’s a factor of two among cosmologists? (In this case, 4 sigma.)

Taking the data at face value, the original prediction of LCDM was falsified by the second peak. But, no problem, we can move the goal posts, in this case by increasing the baryon density. The successful prediction of the third peak only comes after the goal posts have been moved to accommodate the second peak. Citing only the comparable size of third peak to the second while not acknowledging that the second was too small elides the critical fact that No-CDM got something right, a priori, that LCDM did not. No-CDM failed only after LCDM had already failed. The difference is that I acknowledge its failure while cosmologists elide this inconvenient detail. Perhaps the second peak amplitude is a fluke, but it was a unique prediction that was exactly nailed and remains true in all subsequent data. That’s a pretty remarkable fluke4.

LCDM wins ugly here by virtue of its flexibility. It has greater freedom to fit the data – any of the models in the figure of Dodelson & Hu will do. In contrast. No-CDM is the single blue line in my figure above, and nothing else. Plausible variations in the baryon density make hardly any difference: A1:2 has to have the value that was subsequently observed, and no other. It passed that test with flying colors. It flunked the subsequent test posed by A2:3. For LCDM this isn’t even a test, it is an exercise in fitting the data with a model that has enough parameters5 to do so.

There were a number of years at the beginning of the century during which the No-CDM prediction for the A1:2 was repeatedly confirmed by multiple independent experiments, but before the third peak was convincingly detected. During this time, cosmologists exhibited the same attitude that Clayton displays here: the answer has to be CDM! This warrants mention because the evidence Clayton cites did not yet exist. Clearly the as-yet unobserved third peak was not the deciding factor.

In those days, when No-CDM was the only correct a priori prediction, I would point out to cosmologists that it had got A1:2 right when I got the chance (which was rarely: I was invited to plenty of conferences in those days, but none on the CMB). The typical reaction was usually outright denial6 though sometimes it warranted a dismissive “That’s not a MOND prediction.” The latter is a fair criticism. No-CDM is just General Relativity without CDM. It represented MOND as a proxy under the ansatz that MOND effects had not yet manifested in a way that affected the CMB. I expected that this ansatz would fail at some point, and discussed some of the ways that this should happen. One that’s relevant today is that galaxies form early in MOND, so reionization happens early, and the amplitude of gravitational lensing effects is amplified. There is evidence for both of these now. What I did not anticipate was a departure from a damping spectrum around L=600 (between the second and third peaks). That’s a clear deviation from the prediction, which falsifies the ansatz but not MOND itself. After all, they were correct in noting that this wasn’t a MOND prediction per se, just a proxy. MOND, like Newtonian dynamics before it, is relativity adjacent, but not itself a relativistic theory. Neither can explain the CMB on their own. If you find that an unsatisfactory answer, imagine how I feel.

The same people who complained then that No-CDM wasn’t a real MOND prediction now want to hold MOND to the No-CDM predicted power spectrum and nothing else. First it was the second peak isn’t a real MOND prediction! then when the third peak was observed it became no way MOND can do this! This isn’t just hypocritical, it is bad science. The obvious way to proceed would be to build on the theory that had the greater, if incomplete, predictive success. Instead, the reaction has consistently been to cherry-pick the subset of facts that precludes the need for serious rethinking.

This brings us to sociology, so let’s examine some more of what Clayton has to say:

Any talk I’ve ever seen by McGaugh (or more exotic modified gravity people like Verlinde) elides this fact, and they evade the questions when I put my hand up to ask. I have invited McGaugh to a conference before specifically to discuss this point, and he just doesn’t want to.

Now you’re getting personal.

There is so much to unpack here, I hardly know where to start. By saying I “elide this fact” about the qualitatively equality of the second and third peak, Clayton is basically accusing me of lying by omission. This is pretty rich coming from a community that consistently elides the history I relate above, and never addresses the question raised by MOND’s predictive power.

Intellectual honesty is very important to me – being honest that MOND predicted what I saw in low surface brightness where my own prediction was wrong is what got me into this mess in the first place. It would have been vastly more convenient to pretend that I never heard of MOND (at first I hadn’t7) and act like that never happened. That would be an lie of omission. It would be a large lie, a lie that denies an important aspect of how the world works (what we’re supposed to uncover through science), the sort of lie that cleric Paul Gerhardt may have had in mind when he said

When a man lies, he murders some part of the world.

Paul Gerhardt

Clayton is, in essence, accusing me of exactly that by failing to mention the CMB in talks he has seen. That might be true – I give a lot of talks. He hasn’t been to most of them, and I usually talk about things I’ve done more recently than 2004. I’ve commented explicitly on this complaint before

There’s only so much you can address in a half hour talk. [This is a recurring problem. No matter what I say, there always seems to be someone who asks “why didn’t you address X?” where X is usually that person’s pet topic. Usually I could do so, but not in the time allotted.]

– so you may appreciate my exasperation at being accused of dishonesty by someone whose complaint is so predictable that I’ve complained before about people who make this complaint. I’m only human – I can’t cover all subjects for all audiences every time all the time. Moreover, I do tend to choose to discuss subjects that may be news to an audience, not simply reprise the greatest hits they want to hear. Clayton obviously knows about the third peak; he doesn’t need to hear about it from me. This is the scientific equivalent of shouting Freebird! at a concert.

It isn’t like I haven’t talked about it. I have been rigorously honest about the CMB, and certainly have not omitted mention of the third peak. Here is a comment from February 2003 when the third peak was only tentatively detected:

Page et al. (2003) do not offer a WMAP measurement of the third peak. They do quote a compilation of other experiments by Wang et al. (2003). Taking this number at face value, the second to third peak amplitude ratio is A2:3 = 1.03 +/- 0.20. The LCDM expectation value for this quantity was 1.1, while the No-CDM expectation was 1.9. By this measure, LCDM is clearly preferable, in contradiction to the better measured first-to-second peak ratio.

Or here, in March 2006:

the Boomerang data and the last credible point in the 3-year WMAP data both have power that is clearly in excess of the no-CDM prediction. The most natural interpretation of this observation is forcing by a mass component that does not interact with photons, such as non-baryonic cold dark matter.

There are lots like this, including my review for CJP and this talk given at KITP where I had been asked to explicitly take the side of MOND in a debate format for an audience of largely particle physicists. The CMB, including the third peak, appears on the fourth slide, which is right up front, not being elided at all. In the first slide, I tried to encapsulate the attitudes of both sides:

I did the same at a meeting in Stony Brook where I got a weird vibe from the audience; they seemed to think I was lying about the history of the second peak that I recount above. It will be hard to agree on an interpretation if we can’t agree on documented historical facts.

More recently, this image appears on slide 9 of this lecture from the cosmology course I just taught (Fall 2022):

I recognize this slide from talks I’ve given over the past five plus years; this class is the most recent place I’ve used it, not the first. On some occasions I wrote “The 3rd peak is the best evidence for CDM.” I do not recall which all talks I used this in; many of them were likely colloquia for physics departments where one has more time to cover things than in a typical conference talk. Regardless, these apparently were not the talks that Clayton attended. Rather than it being the case that I never address this subject, the more conservative interpretation of the experience he relates would be that I happened not to address it in the small subset of talks that he happened to attend.

But do go off, dude: tell everyone how I never address this issue and evade questions about it.

I have been extraordinarily patient with this sort of thing, but I confess to a great deal of exasperation at the perpetual whataboutism that many scientists engage in. It is used reflexively to shut down discussion of alternatives: dark matter has to be right for this reason (here the CMB); nothing else matters (galaxy dynamics), so we should forbid discussion of MOND. Even if dark matter proves to be correct, the CMB is being used an excuse to not address the question of the century: why does MOND get so many predictions right? Any scientist with a decent physical intuition who takes the time to rub two brain cells together in contemplation of this question will realize that there is something important going on that simply invoking dark matter does not address.

In fairness to McGaugh, he pointed out some very interesting features of galactic DM distributions that do deserve answers. But it turns out that there are a plurality of possibilities, from complex DM physics (self interactions) to unmodelable SM physics (stellar feedback, galaxy-galaxy interactions). There are no such alternatives to CDM to explain the CMB power spectrum.

Thanks. This is nice, and why I say it would be easier to just pretend to never have heard of MOND. Indeed, this succinctly describes the trajectory I was on before I became aware of MOND. I would prefer to be recognized for my own work – of which there is plenty – than an association with a theory that is not my own – an association that is born of honestly reporting a surprising observation. I find my reception to be more favorable if I just talk about the data, but what is the point of taking data if we don’t test the hypotheses?

I have gone to great extremes to consider all the possibilities. There is not a plurality of viable possibilities; most of these things do not work. The specific ideas that are cited here are known not work. SIDM apears to work because it has more free parameters than are required to describe the data. This is a common failing of dark matter models that simply fit some functional form to observed rotation curves. They can be made to fit the data, but they cannot be used to predict the way MOND can.

Feedback is even worse. Never mind the details of specific feedback models, and think about what is being said here: the observations are to be explained by “unmodelable [standard model] physics.” This is a way of saying that dark matter claims to explain the phenomena while declining to make a prediction. Don’t worry – it’ll work out! How can that be considered better than or even equivalent to MOND when many of the problems we invoke feedback to solve are caused by the predictions of MOND coming true? We’re just invoking unmodelable physics as a deus ex machina to make dark matter models look like something they are not. Are physicists straight-up asserting that it is better to have a theory that is unmodelable than one that makes predictions that come true?

Returning to the CMB, are there no “alternatives to CDM to explain the CMB power spectrum”? I certainly do not know how to explain the third peak with the No-CDM ansatz. For that we need a relativistic theory, like Beklenstein‘s TeVeS. This initially seemed promising, as it solved the long-standing problem of gravitational lensing in MOND. However, it quickly became clear that it did not work for the CMB. Nevertheless, I learned from this that there could be more to the CMB oscillations than allowed by the simple No-CDM ansatz. The scalar field (an entity theorists love to introduce) in TeVeS-like theories could play a role analogous to cold dark matter in the oscillation equations. That means that what I thought was a killer argument against MOND – the exact same argument Clayton is making – is not as absolute as I had thought.

Writing down a new relativistic theory is not trivial. It is not what I do. I am an observational astronomer. I only play at theory when I can’t get telescope time.

Comic from the Far Side by Gary Larson.

So in the mid-00’s, I decided to let theorists do theory and started the first steps in what would ultimately become the SPARC database (it took a decade and a lot of effort by Jim Schombert and Federico Lelli in addition to myself). On the theoretical side, it also took a long time to make progress because it is a hard problem. Thanks to work by Skordis & Zlosnik on a theory they [now] call AeST8, it is possible to fit the acoustic power spectrum of the CMB:

CMB power spectrum observed by Planck fit by AeST (Skordis & Zlosnik 2021).

This fit is indistinguishable from that of LCDM.

I consider this to be a demonstration, not necessarily the last word on the correct theory, but hopefully an iteration towards one. The point here is that it is possible to fit the CMB. That’s all that matters for our current discussion: contrary to the steady insistence of cosmologists over the past 15 years, CDM is not the only way to fit the CMB. There may be other possibilities that we have yet to figure out. Perhaps even a plurality of possibilities. This is hard work and to make progress we need a critical mass of people contributing to the effort, not shouting rubbish from the peanut gallery.

As I’ve done before, I like to take the language used in favor of dark matter, and see if it also fits when I put on a MOND hat:

As a galaxy dynamicist, let me just remind everyone that the primary reason to believe in MOND as a physical theory and not some curious dark matter phenomenology is the very high precision with which MOND predicts, a priori, the dynamics of low-acceleration systems, especially low surface brightness galaxies whose kinematics were practically unknown at the time of its inception. There is a stone-cold, quantitative, crystal clear prediction of MOND that the kinematics of galaxies follows uniquely from their observed baryon distributions. This is something CDM profoundly and irremediably gets wrong: it predicts that the dark matter halo should have a central cusp9 that is not observed, and makes no prediction at all for the baryon distribution, let alone does it account for the detailed correspondence between bumps and wiggles in the baryon distribution and those in rotation curves. This is observed over and over again in hundreds upon hundreds of galaxies, each of which has its own unique mass distribution so that each and every individual case provides a distinct, independent test of the hypothesized force law. In contrast, CDM does not even attempt a comparable prediction: rather than enabling the real-world application to predict that this specific galaxy will have this particular rotation curve, it can only refer to the statistical properties of galaxy-like objects formed in numerical simulations that resemble real galaxies only in the abstract, and can never be used to directly predict the kinematics of a real galaxy in advance of the observation – an ability that has been demonstrated repeatedly by MOND. The simple fact that the simple formula of MOND is so repeatably correct in mapping what we see to what we get is to me the most convincing way to see that we need a grander theory that contains MOND and exactly MOND in the low acceleration limit, irrespective of the physical mechanism by which this is achieved.

That is stronger language than I would ordinarily permit myself. I do so entirely to show the danger of being so darn sure. I actually agree with clayton’s perspective in his quote; I’m just showing what it looks like if we adopt the same attitude with a different perspective. The problems pointed out for each theory are genuine, and the supposed solutions are not obviously viable (in either case). Sometimes I feel like we’re up the proverbial creek without a paddle. I do not know what the right answer is, and you should be skeptical of anyone who is sure that he does. Being sure is the sure road to stagnation.


1It may surprise some advocates of dark matter that I barely touch on MOND in this course, only getting to it at the end of the semester, if at all. It really is evidence-based, with a focus on the dynamical evidence as there is a lot more to this than seems to be appreciated by most physicists*. We also teach a course on cosmology, where students get the material that physicists seem to be more familiar with.

*I once had a colleague who was is a physics department ask how to deal with opposition to developing a course on galaxy dynamics. Apparently, some of the physicists there thought it was not a rigorous subject worthy of an entire semester course – an attitude that is all too common. I suggested that she pointedly drop the textbook of Binney & Tremaine on their desks. She reported back that this technique proved effective.

2I do not know who clayton is; that screen name does not suffice as an identifier. He claims to have been in contact with me at some point, which is certainly possible: I talk to a lot of people about these issues. He is welcome to contact me again, though he may wish to consider opening with an apology.

3One of the hardest realizations I ever had as a scientist was that both of the reasons (1) and (2) that I believed to absolutely require CDM assumed that gravity was normal. If one drops that assumption, as one must to contemplate MOND, then these reasons don’t require CDM so much as they highlight that something is very wrong with the universe. That something could be MOND instead of CDM, both of which are in the category of who ordered that?

4In the early days (late ’90s) when I first started asking why MOND gets any predictions right, one of the people I asked was Joe Silk. He dismissed the rotation curve fits of MOND as a fluke. There were 80 galaxies that had been fit at the time, which seemed like a lot of flukes. I mention this because one of the persistent myths of the subject is that MOND is somehow guaranteed to magically fit rotation curves. Erwin de Blok and I explicitly showed that this was not true in a 1998 paper.

5I sometimes hear cosmologists speak in awe of the thousands of observed CMB modes that are fit by half a dozen LCDM parameters. This is impressive, but we’re fitting a damped and driven oscillation – those thousands of modes are not all physically independent. Moreover, as can be seen in the figure from Dodelson & Hu, some free parameters provide more flexibility than others: there is plenty of flexibility in a model with dark matter to fit the CMB data. Only with the Planck data do minor tensions arise, the reaction to which is generally to add more free parameters, like decoupling the primordial helium abundance from that of deuterium, which is anathema to standard BBN so is sometimes portrayed as exciting, potentially new physics.

For some reason, I never hear the same people speak in equal awe of the hundreds of galaxy rotation curves that can be fit by MOND with a universal acceleration scale and a single physical free parameter, the mass-to-light ratio. Such fits are over-constrained, and every single galaxy is an independent test. Indeed, MOND can predict rotation curves parameter-free in cases where gas dominates so that the stellar mass-to-light ratio is irrelevant.

How should we weigh the relative merit of these very different lines of evidence?

6On a number of memorable occasions, people shouted “No you didn’t!” On smaller number of those occasions (exactly two), they bothered to look up the prediction in the literature and then wrote to apologize and agree that I had indeed predicted that.

7If you read this paper, part of what you will see is me being confused about how low surface brightness galaxies could adhere so tightly to the Tully-Fisher relation. They should not. In retrospect, one can see that this was a MOND prediction coming true, but at the time I didn’t know about that; all I could see was that the result made no sense in the conventional dark matter picture.

Some while after we published that paper, Bob Sanders, who was at the same institute as my collaborators, related to me that Milgrom had written to him and asked “Do you know these guys?”

8Initially they had called it RelMOND, or just RMOND. AeST stands for Aether-Scalar-Tensor, and is clearly a step along the lines that Bekenstein made with TeVeS.

In addition to fitting the CMB, AeST retains the virtues of TeVeS in terms of providing a lensing signal consistent with the kinematics. However, it is not obvious that it works in detail – Tobias Mistele has a brand new paper testing it, and it doesn’t look good at extremely low accelerations. With that caveat, it significantly outperforms extant dark matter models.

There is an oft-repeated fallacy that comes up any time a MOND-related theory has a problem: “MOND doesn’t work therefore it has to be dark matter.” This only ever seems to hold when you don’t bother to check what dark matter predicts. In this case, we should but don’t detect the edge of dark matter halos at higher accelerations than where AeST runs into trouble.

9Another question I’ve posed for over a quarter century now is what would falsify CDM? The first person to give a straight answer to this question was Simon White, who said that cusps in dark matter halos were an ironclad prediction; they had to be there. Many years later, it is clear that they are not, but does anyone still believe this is an ironclad prediction? If it is, then CDM is already falsified. If it is not, then what would be? It seems like the paradigm can fit any surprising result, no matter how unlikely a priori. This is not a strength, it is a weakness. We can, and do, add epicycle upon epicycle to save the phenomenon. This has been my concern for CDM for a long time now: not that it gets some predictions wrong, but that it can apparently never get a prediction so wrong that we can’t patch it up, so we can never come to doubt it if it happens to be wrong.