Last time, I commented on the developing situation with binary stars as a test of MOND. I neglected to enable comments for that post, so have done so now.

Indranil Banik has shared his perspective on wide binaries in a talk on the subject that is available on Youtube, included below.

Indranil and his collaborators are not seeing a MOND effect in wide binaries. Others have, as I discussed in the previous post. After the video posted above, Indranil comments on the work of Kyu-Hyun Chae:

Regarding the article by Chae (https://arxiv.org/abs/2305.04613), equation 7 of MNRAS 506, 2269–2295 (2021) shows that the relative velocity is limited such that the v_tilde parameter (ratio of relative velocity within the sky plane to the Newtonian circular velocity at the projected separation) is at most 1 for 5 M_Sun binaries and in general is sqrt(5 M_Sun/M) for a binary of total mass M. This means v_tilde only goes up to 2 for M = 1.25 M_Sun, but more generally it goes up to a higher value at lower mass. Since the main signal in MOND is a broader v_tilde distribution at lower acceleration and a lower mass reduces the acceleration, this can lead to an artificial signal whereby lower mass systems have a larger rms v_tilde. Now a simple rms statistic is not exactly what Chae did, but this does highlight the kind of problem that can arise. Indeed, the v_tilde distribution prepared by Chae for the article in its figure 25 does show a rather sharp decline in the v_tilde distribution – there is not much of an extended tail, even less than in the model! This is obviously not due to measurement errors and contaminating effects like chance alignments, which would broaden the tail further. Rather, it is due to the upper limit to v_tilde imposed from the sample selection. This just means the underlying sample used is not well suited to the wide binary test, since it was quite clear a priori that the main signal for MOND would be in the region of v_tilde = 1-1.5 or so. One possibility is to try and restrict the analysis to a narrower range of binary total mass to try and alleviate the above concern, in which case the upper limit to v_tilde would be perhaps above 2 for the full sample used. There is however another issue in that lower accelerations generally correspond to higher separations and thus lower orbital velocities, so the fractional uncertainty in the velocity is likely to be larger. Thus, the v_tilde distribution is likely to be broader at low accelerations. This can be counteracted by having low errors across the board, but then the key quantity is the uncertainty on v_tilde. This aspect is not handled very rigorously – it is assumed that if the proper motions are accurate to better than 1%, then v_tilde will be sufficiently well known. But if the tangential velocity is about 20 km/s, a 1% error means an error of 200 m/s on the velocity of each star, so the relative velocity has an uncertainty of about 280 m/s. This is quite large compared to typical wide binary relative velocities, which are generally a few hundred m/s. Without doing a more detailed analysis, perhaps one thing to do would be to change this 1% requirement to 0.5% or 1.5% and see what happens. I am therefore not convinced that the MOND signal claimed by Chae is genuine.

I. Banik

Kyu-Hyun Chae responded to that, but apparently many people are not able to see his response on Youtube. I cannot. So I asked him about it, and he shares it here:

Since Indranil sent this concern to me in person, I’m replying here. No cut on v_tilde is used in my analysis because it is a gravity test. I did not use equation 7 of El-Badry et al. (MNRAS 506, 2269–2295 (2021)) to cut out high v_tilde data, so there are some (though relatively small number of) data points above equation (7). I removed chance alignment cases by requiring R < 0.01 (El-Badry et al. convincingly show that R can be used to effectively remove chance alignment cases). This is the main reason why there is no high velocity tail. I have already considered varying proper motion (PM) relative errors: there are three cases PM rel error < 0.01 (nominal case), <0.003 (smaller case), and <0.2 (larger case). The conclusion on gravity anomaly (MOND signal) is the same in all three cases although the fitted f_multi (multiplicity fraction) varies. We can have more discussion in the st Andrews June meeting. I’m sure it will take some time but you will be convinced that my results are correct.

K.-H. Chae

He also shares this figure:

This is how the science sausage is made. As yet, there is no consensus.