25 years a heretic

25 years a heretic

People seem to like to do retrospectives at year’s end. I take a longer view, but the end of 2020 seems like a fitting time to do that. Below is the text of a paper I wrote in 1995 with collaborators at the Kapteyn Institute of the University of Groningen. The last edit date is from December of that year, so this text (in plain TeX, not LaTeX!) is now a quarter century old. I am just going to cut & paste it as-was; I even managed to recover the original figures and translate them into something web-friendly (postscript to jpeg). This is exactly how it was.

This was my first attempt to express in the scientific literature my concerns for the viability of the dark matter paradigm, and my puzzlement that the only theory to get any genuine predictions right was MOND. It was the hardest admission in my career that this could be even a remote possibility. Nevertheless, intellectual honesty demanded that I report it. To fail to do so would be an act of reality denial antithetical to the foundational principles of science.

It was never published. There were three referees. Initially, one was positive, one was negative, and one insisted that rotation curves weren’t flat. There was one iteration; this is the resubmitted version in which the concerns of the second referee were addressed to his apparent satisfaction by making the third figure a lot more complicated. The third referee persisted that none of this was valid because rotation curves weren’t flat. Seems like he had a problem with something beyond the scope of this paper, but the net result was rejection.

One valid concern that ran through the refereeing process from all sides was “what about everything else?” This is a good question that couldn’t fit into a short letter like this. Thanks to the support of Vera Rubin and a Carnegie Fellowship, I spent the next couple of years looking into everything else. The results were published in 1998 in a series of three long papers: one on dark matter, one on MOND, and one making detailed fits.

This had started from a very different place intellectually with my efforts to write a paper on galaxy formation that would have been similar to contemporaneous papers like Dalcanton, Spergel, & Summers and Mo, Mao, & White. This would have followed from my thesis and from work with Houjun Mo, who was an office mate when we were postdocs at the IoA in Cambridge. (The ideas discussed in Mo, McGaugh, & Bothun have been reborn recently in the galaxy formation literature under the moniker of “assembly bias.”) But I had realized by then that my ideas – and those in the papers cited – were wrong. So I didn’t write a paper that I knew to be wrong. I wrote this one instead.

Nothing substantive has changed since. Reading it afresh, I’m amazed how many of the arguments over the past quarter century were anticipated here. As a scientific community, we are stuck in a rut, and seem to prefer to spin the wheels to dig ourselves in deeper than consider the plain if difficult path out.


Testing hypotheses of dark matter and alternative gravity with low surface density galaxies

The missing mass problem remains one of the most vexing in astrophysics. Observations clearly indicate either the presence of a tremendous amount of as yet unidentified dark matter1,2, or the need to modify the law of gravity3-7. These hypotheses make vastly different predictions as a function of density. Observations of the rotation curves of galaxies of much lower surface brightness than previously studied therefore provide a powerful test for discriminating between them. The dark matter hypothesis requires a surprisingly strong relation between the surface brightness and mass to light ratio8, placing stringent constraints on theories of galaxy formation and evolution. Alternatively, the observed behaviour is predicted4 by one of the hypothesised alterations of gravity known as modified Newtonian dynamics3,5 (MOND).

Spiral galaxies are observed to have asymptotically flat [i.e., V(R) ~ constant for large R] rotation curves that extend well beyond their optical edges. This trend continues for as far (many, sometimes > 10 galaxy scale lengths) as can be probed by gaseous tracers1,2 or by the orbits of satellite galaxies9. Outside a galaxy’s optical radius, the gravitational acceleration is aN = GM/R2 = V2/R so one expects V(R) ~ R-1/2. This Keplerian behaviour is not observed in galaxies.

One approach to this problem is to increase M in the outer parts of galaxies in order to provide the extra gravitational acceleration necessary to keep the rotation curves flat. Indeed, this is the only option within the framework of Newtonian gravity since both V and R are directly measured. The additional mass must be invisible, dominant, and extend well beyond the optical edge of the galaxies.

Postulating the existence of this large amount of dark matter which reveals itself only by its gravitational effects is a radical hypothesis. Yet the kinematic data force it upon us, so much so that the existence of dark matter is generally accepted. Enormous effort has gone into attempting to theoretically predict its nature and experimentally verify its existence, but to date there exists no convincing detection of any hypothesised dark matter candidate, and many plausible candidates have been ruled out10.

Another possible solution is to alter the fundamental equation aN = GM/R2. Our faith in this simple equation is very well founded on extensive experimental tests of Newtonian gravity. Since it is so fundamental, altering it is an even more radical hypothesis than invoking the existence of large amounts of dark matter of completely unknown constituent components. However, a radical solution is required either way, so both possibilities must be considered and tested.

A phenomenological theory specifically introduced to address the problem of the flat rotation curves is MOND3. It has no other motivation and so far there is no firm physical basis for the theory. It provides no satisfactory cosmology, having yet to be reconciled with General Relativity. However, with the introduction of one new fundamental constant (an acceleration a0), it is empirically quite successful in fitting galaxy rotation curves11-14. It hypothesises that for accelerations a < a0 = 1.2 x 10-10 m s-2, the effective acceleration is given by aeff = (aN a0)1/2. This simple prescription works well with essentially only one free parameter per galaxy, the stellar mass to light ratio, which is subject to independent constraint by stellar evolution theory. More importantly, MOND makes predictions which are distinct and testable. One specific prediction4 is that the asymptotic (flat) value of the rotation velocity, Va, is Va = (GMa0)1/4. Note that Va does not depend on R, but only on M in the regime of small accelerations (a < a0).

In contrast, Newtonian gravity depends on both M and R. Replacing R with a mass surface density variable S = M(R)/R2, the Newtonian prediction becomes M S ~ Va4 which contrasts with the MOND prediction M ~ Va4. These relations are the theoretical basis in each case for the observed luminosity-linewidth relation L ~ Va4 (better known as the Tully-Fisher15 relation. Note that the observed value of the exponent is bandpass dependent, but does obtain the theoretical value of 4 in the near infrared16 which is considered the best indicator of the stellar mass. The systematic variation with bandpass is a very small effect compared to the difference between the two gravitational theories, and must be attributed to dust or stars under either theory.) To transform from theory to observation one requires the mass to light ratio Y: Y = M/L = S/s, where s is the surface brightness. Note that in the purely Newtonian case, M and L are very different functions of R, so Y is itself a strong function of R. We define Y to be the mass to light ratio within the optical radius R*, as this is the only radius which can be measured by observation. The global mass to light ratio would be very different (since M ~ R for R > R*, the total masses of dark haloes are not measurable), but the particular choice of definition does not affect the relevant functional dependences is all that matters. The predictions become Y2sL ~ Va4 for Newtonian gravity8,16 and YL ~ Va4 for MOND4.

The only sensible17 null hypothesis that can be constructed is that the mass to light ratio be roughly constant from galaxy to galaxy. Clearly distinct predictions thus emerge if galaxies of different surface brightnesses s are examined. In the Newtonian case there should be a family of parallel Tully-Fisher relations for each surface brightness. In the case of MOND, all galaxies should follow the same Tully-Fisher relation irrespective of surface brightness.

Recently it has been shown that extreme objects such as low surface brightness galaxies8,18 (those with central surface brightnesses fainter than s0 = 23 B mag./[] corresponding 40 L pc-2) obey the same Tully-Fisher relation as do the high surface brightness galaxies (typically with s0 = 21.65 B mag./[] or 140 L pc-2) which originally15 defined it. Fig. 1 shows the luminosity-linewidth plane for galaxies ranging over a factor of 40 in surface brightness. Regardless of surface brightness, galaxies fall on the same Tully-Fisher relation.

The luminosity-linewidth (Tully-Fisher) relation for spiral galaxies over a large range in surface brightness. The B-band relation is shown; the same result is obtained in all bands8,18. Absolute magnitudes are measured from apparent magnitudes assuming H0 = 75 km/s/Mpc. Rotation velocities Va are directly proportional to observed 21 cm linewidths (measured as the full width at 20% of maximum) W20 corrected for inclination [sin-1(i)]. Open symbols are an independent sample which defines42 the Tully-Fisher relation (solid line). The dotted lines show the expected shift of the Tully-Fisher relation for each step in surface brightness away from the canonical value s0 = 21.5 if the mass to light ratio remains constant. Low surface brightness galaxies are plotted as solid symbols, binned by surface brightness: red triangles: 22 < s0 < 23; green squares: 23 < s0 < 24; blue circles: s0 > 24. One galaxy with two independent measurements is connected by a line. This gives an indication of the typical uncertainty which is sufficient to explain nearly all the scatter. Contrary to the clear expectation of a readily detectable shift as indicated by the dotted lines, galaxies fall on the same Tully-Fisher relation regardless of surface brightness, as predicted by MOND.

MOND predicts this behaviour in spite of the very different surface densities of low surface brightness galaxies. In order to understand this observational fact in the framework of standard Newtonian gravity requires a subtle relation8 between surface brightness and the mass to light ratio to keep the product sY2 constant. If we retain normal gravity and the dark matter hypothesis, this result is unavoidable, and the null hypothesis of similar mass to light ratios (which, together with an assumed constancy of surface brightness, is usually invoked to explain the Tully-Fisher relation) is strongly rejected. Instead, the current epoch surface brightness is tightly correlated with the properties of the dark matter halo, placing strict constraints on models of galaxy formation and evolution.

The mass to light ratios computed for both cases are shown as a function of surface brightness in Fig. 2. Fig. 2 is based solely on galaxies with full rotation curves19,20 and surface photometry, so Va and R* are directly measured. The correlation in the Newtonian case is very clear (Fig. 2a), confirming our inference8 from the Tully-Fisher relation. Such tight correlations are very rare in extragalactic astronomy, and the Y-s relation is probably the real cause of an inferred Y-L relation. The latter is much weaker because surface brightness and luminosity are only weakly correlated21-24.

The mass to light ratio Y (in M/L) determined with (a) Newtonian dynamics and (b) MOND, plotted as a function of central surface brightness. The mass determination for Newtonian dynamics is M = V2 R*/G and for MOND is M = V4/(G a0). We have adopted as a consistent definition of the optical radius R* four scale lengths of the exponential optical disc. This is where discs tend to have edges, and contains essentially all the light21,22. The definition of R* makes a tremendous difference to the absolute value of the mass to light ratio in the Newtonian case, but makes no difference at all to the functional relation will be present regardless of the precise definition. These mass measurements are more sensitive to the inclination corrections than is the Tully-Fisher relation since there is a sin-2(i) term in the Newtonian case and one of sin-4(i) for MOND. It is thus very important that the inclination be accurately measured, and we have retained only galaxies which have adequate inclination determinations — error bars are plotted for a nominal uncertainty of 6 degrees. The sensitivity to inclination manifests itself as an increase in the scatter from (a) to (b). The derived mass is also very sensitive to the measured value of the asymptotic velocity itself, so we have used only those galaxies for which this can be taken directly from a full rotation curve19,20,42. We do not employ profile widths; the velocity measurements here are independent of those in Fig. 1. In both cases, we have subtracted off the known atomic gas mass19,20,42, so what remains is essentially only the stars and any dark matter that may exist. A very strong correlation (regression coefficient = 0.85) is apparent in (a): this is the mass to light ratio — surface brightness conspiracy. The slope is consistent (within the errors) with the theoretical expectation s ~ Y-2 derived from the Tully-Fisher relation8. At the highest surface brightnesses, the mass to light ratio is similar to that expected for the stellar population. At the faintest surface brightnesses, it has increased by a factor of nearly ten, indicating increasing dark matter domination within the optical disc as surface brightness decreases or a very systematic change in the stellar population, or both. In (b), the mass to light ratio scatters about a constant value of 2. This mean value, and the lack of a trend, is what is expected for stellar populations17,21-24.

The Y-s relation is not predicted by any dark matter theory25,26. It can not be purely an effect of the stellar mass to light ratio, since no other stellar population indicator such as color21-24 or metallicity27,28 is so tightly correlated with surface brightness. In principle it could be an effect of the stellar mass fraction, as the gas mass to light ratio follows a relation very similar to that of total mass to light ratio20. We correct for this in Fig. 2 by subtracting the known atomic gas mass so that Y refers only to the stars and any dark matter. We do not correct for molecular gas, as this has never been detected in low surface brightness galaxies to rather sensitive limits30 so the total mass of such gas is unimportant if current estimates31 of the variation of the CO to H2 conversion factor with metallicity are correct. These corrections have no discernible effect at all in Fig. 2 because the dark mass is totally dominant. It is thus very hard to see how any evolutionary effect in the luminous matter can be relevant.

In the case of MOND, the mass to light ratio directly reflects that of the stellar population once the correction for gas mass fraction is made. There is no trend of Y* with surface brightness (Fig. 2b), a more natural result and one which is consistent with our studies of the stellar populations of low surface brightness galaxies21-23. These suggest that Y* should be roughly constant or slightly declining as surface brightness decreases, with much scatter. The mean value Y* = 2 is also expected from stellar evolutionary theory17, which always gives a number 0 < Y* < 10 and usually gives 0.5 < Y* < 3 for disk galaxies. This is particularly striking since Y* is the only free parameter allowed to MOND, and the observed mean is very close to that directly observed29 in the Milky Way (1.7 ± 0.5 M/L).

The essence of the problem is illustrated by Fig. 3, which shows the rotation curves of two galaxies of essentially the same luminosity but vastly different surface brightnesses. Though the asymptotic velocities are the same (as required by the Tully-Fisher relation), the rotation curve of the low surface brightness galaxy rises less quickly than that of the high surface brightness galaxy as expected if the mass is distributed like the light. Indeed, the ratio of surface brightnesses is correct to explain the ratio of velocities at small radii if both galaxies have similar mass to light ratios. However, if this continues to be the case as R increases, the low surface brightness galaxy should reach a lower asymptotic velocity simply because R* must be larger for the same L. That this does not occur is the problem, and poses very significant systematic constraints on the dark matter distribution.

The rotation curves of two galaxies, one of high surface brightness11 (NGC 2403; open circles) and one of low surface brightness19 (UGC 128; filled circles). The two galaxies have very nearly the same asymptotic velocity, and hence luminosity, as required by the Tully-Fisher relation. However, they have central surface brightnesses which differ by a factor of 13. The lines give the contributions to the rotation curves of the various components. Green: luminous disk. Blue: dark matter halo. Red: luminous disk (stars and gas) with MOND. Solid lines refer to NGC 2403 and dotted lines to UGC 128. The fits for NGC 2403 are taken from ref. 11, for which the stars have Y* = 1.5 M/L. For UGC 128, no specific fit is made: the blue and green dotted lines are simply the NGC 2403 fits scaled by the ratio of disk scale lengths h. This provides a remarkably good description of the UGC 128 rotation curve and illustrates one possible manifestation of the fine tuning problem: if disks have similar Y, the halo parameters p0 and R0 must scale with the disk parameters s0 and h while conspiring to keep the product p0 R02 fixed at any given luminosity. Note also that the halo of NGC 2403 gives an adequate fit to the rotation curve of UGC 128. This is another possible manifestation of the fine tuning problem: all galaxies of the same luminosity have the same halo, with Y systematically varying with s0 so that Y* goes to zero as s0 goes to zero. Neither of these is exactly correct because the contribution of the gas can not be set to zero as is mathematically possible with the stars. This causes the resulting fin tuning problems to be even more complex, involving more parameters. Alternatively, the green dotted line is the rotation curve expected by MOND for a galaxy with the observed luminous mass distribution of UGC 128.

Satisfying the Tully-Fisher relation has led to some expectation that haloes all have the same density structure. This simplest possibility is immediately ruled out. In order to obtain L ~ Va4 ~ MS, one might suppose that the mass surface density S is constant from galaxy to galaxy, irrespective of the luminous surface density s. This achieves the correct asymptotic velocity Va, but requires that the mass distribution, and hence the complete rotation curve, be essentially identical for all galaxies of the same luminosity. This is obviously not the case (Fig. 3), as the rotation curves of lower surface brightness galaxies rise much more gradually than those of higher surface brightness galaxies (also a prediction4 of MOND). It might be possible to have approximately constant density haloes if the highest surface brightness disks are maximal and the lowest minimal in their contribution to the inner parts of the rotation curves, but this then requires fine tuning of Y* with this systematically decreasing with surface brightness.

The expected form of the halo mass distribution depends on the dominant form of dark matter. This could exist in three general categories: baryonic (e.g., MACHOs), hot (e.g., neutrinos), and cold exotic particles (e.g., WIMPs). The first two make no specific predictions. Baryonic dark matter candidates are most subject to direct detection, and most plausible candidates have been ruled out10 with remaining suggestions of necessity sounding increasingly contrived32. Hot dark matter is not relevant to the present problem. Even if neutrinos have a small mass, their velocities considerably exceed the escape velocities of the haloes of low mass galaxies where the problem is most severe. Cosmological simulations involving exotic cold dark matter33,34 have advanced to the point where predictions are being made about the density structure of haloes. These take the form33,34 p(R) = pH/[R(R+RH)b] where pH characterises the halo density and RH its radius, with b ~ 2 to 3. The characteristic density depends on the mean density of the universe at the collapse epoch, and is generally expected to be greater for lower mass galaxies since these collapse first in such scenarios. This goes in the opposite sense of the observations, which show that low mass and low surface brightness galaxies are less, not more, dense. The observed behaviour is actually expected in scenarios which do not smooth on a particular mass scale and hence allow galaxies of the same mass to collapse at a variety of epochs25, but in this case the Tully-Fisher relation should not be universal. Worse, note that at small R < RH, p(R) ~ R-1. It has already been noted32,35 that such a steep interior density distribution is completely inconsistent with the few (4) analysed observations of dwarf galaxies. Our data19,20 confirm and considerably extend this conclusion for 24 low surface brightness galaxies over a wide range in luminosity.

The failure of the predicted exotic cold dark matter density distribution either rules out this form of dark matter, indicates some failing in the simulations (in spite of wide-spread consensus), or requires some mechanism to redistribute the mass. Feedback from star formation is usually invoked for the last of these, but this can not work for two reasons. First, an objection in principle: a small mass of stars and gas must have a dramatic impact on the distribution of the dominant dark mass, with which they can only interact gravitationally. More mass redistribution is required in less luminous galaxies since they start out denser but end up more diffuse; of course progressively less baryonic material is available to bring this about as luminosity declines. Second, an empirical objection: in this scenario, galaxies explode and gas is lost. However, progressively fainter and lower surface brightness galaxies, which need to suffer more severe explosions, are actually very gas rich.

Observationally, dark matter haloes are inferred to have density distributions1,2,11 with constant density cores, p(R) = p0/[1 + (R/R0)g]. Here, p0 is the core density and R0 is the core size with g ~ 2 being required to produce flat rotation curves. For g = 2, the rotation curve resulting from this mass distribution is V(R) = Va [1-(R0/R) tan-1({R/R0)]1/2 where the asymptotic velocity is Va = (4πG p0 R02)1/2. To satisfy the Tully-Fisher relation, Va, and hence the product p0 R02, must be the same for all galaxies of the same luminosity. To decrease the rate of rise of the rotation curves as surface brightness decreases, R0 must increase. Together, these two require a fine tuning conspiracy to keep the product p0 R02 constant while R0 must vary with the surface brightness at a given luminosity. Luminosity and surface brightness themselves are only weakly correlated, so there exists a wide range in one parameter at any fixed value of the other. Thus the structural properties of the invisible dark matter halo dictate those of the luminous disk, or vice versa. So, s and L give the essential information about the mass distribution without recourse to kinematic information.

A strict s-p0-R0 relation is rigorously obeyed only if the haloes are spherical and dominate throughout. This is probably a good approximation for low surface brightness galaxies but may not be for the those of the highest surface brightness. However, a significant non-halo contribution can at best replace one fine tuning problem with another (e.g., surface brightness being strongly correlated with the stellar population mass to light ratio instead of halo core density) and generally causes additional conspiracies.

There are two perspectives for interpreting these relations, with the preferred perspective depending strongly on the philosophical attitude one has towards empirical and theoretical knowledge. One view is that these are real relations which galaxies and their haloes obey. As such, they provide a positive link between models of galaxy formation and evolution and reality.

The other view is that this list of fine tuning requirements makes it rather unattractive to maintain the dark matter hypothesis. MOND provides an empirically more natural explanation for these observations. In addition to the Tully-Fisher relation, MOND correctly predicts the systematics of the shapes of the rotation curves of low surface brightness galaxies19,20 and fits the specific case of UGC 128 (Fig. 3). Low surface brightness galaxies were stipulated4 to be a stringent test of the theory because they should be well into the regime a < a0. This is now observed to be true, and to the limit of observational accuracy the predictions of MOND are confirmed. The critical acceleration scale a0 is apparently universal, so there is a single force law acting in galactic disks for which MOND provides the correct description. The cause of this could be either a particular dark matter distribution36 or a real modification of gravity. The former is difficult to arrange, and a single force law strongly supports the latter hypothesis since in principle the dark matter could have any number of distributions which would give rise to a variety of effective force laws. Even if MOND is not correct, it is essential to understand why it so closely describe the observations. Though the data can not exclude Newtonian dynamics, with a working empirical alternative (really an extension) at hand, we would not hesitate to reject as incomplete any less venerable hypothesis.

Nevertheless, MOND itself remains incomplete as a theory, being more of a Kepler’s Law for galaxies. It provides only an empirical description of kinematic data. While successful for disk galaxies, it was thought to fail in clusters of galaxies37. Recently it has been recognized that there exist two missing mass problems in galaxy clusters, one of which is now solved38: most of the luminous matter is in X-ray gas, not galaxies. This vastly improves the consistency of MOND with with cluster dynamics39. The problem with the theory remains a reconciliation with Relativity and thereby standard cosmology (which is itself in considerable difficulty38,40), and a lack of any prediction about gravitational lensing41. These are theoretical problems which need to be more widely addressed in light of MOND’s empirical success.

ACKNOWLEDGEMENTS. We thank R. Sanders and M. Milgrom for clarifying aspects of a theory with which we were previously unfamiliar. SSM is grateful to the Kapteyn Astronomical Institute for enormous hospitality during visits when much of this work was done. [Note added in 2020: this work was supported by a cooperative grant funded by the EU and would no longer be possible thanks to Brexit.]

REFERENCES

  1. Rubin, V. C. Science 220, 1339-1344 (1983).
  2. Sancisi, R. & van Albada, T. S. in Dark Matter in the Universe, IAU Symp. No. 117, (eds. Knapp, G. & Kormendy, J.) 67-80 (Reidel, Dordrecht, 1987).
  3. Milgrom, M. Astrophys. J. 270, 365-370 (1983).
  4. Milgrom, M. Astrophys. J. 270, 371-383 (1983).
  5. Bekenstein, K. G., & Milgrom, M. Astrophys. J. 286, 7-14
  6. Mannheim, P. D., & Kazanas, D. 1989, Astrophys. J. 342, 635-651 (1989).
  7. Sanders, R. H. Astron. Atrophys. Rev. 2, 1-28 (1990).
  8. Zwaan, M.A., van der Hulst, J. M., de Blok, W. J. G. & McGaugh, S. S. Mon. Not. R. astr. Soc., 273, L35-L38, (1995).
  9. Zaritsky, D. & White, S. D. M. Astrophys. J. 435, 599-610 (1994).
  10. Carr, B. Ann. Rev. Astr. Astrophys., 32, 531-590 (1994).
  11. Begeman, K. G., Broeils, A. H. & Sanders, R. H. Mon. Not. R. astr. Soc. 249, 523-537 (1991).
  12. Kent, S. M. Astr. J. 93, 816-832 (1987).
  13. Milgrom, M. Astrophys. J. 333, 689-693 (1988).
  14. Milgrom, M. & Braun, E. Astrophys. J. 334, 130-134 (1988).
  15. Tully, R. B., & Fisher, J. R. Astr. Astrophys., 54, 661-673 (1977).
  16. Aaronson, M., Huchra, J., & Mould, J. Astrophys. J. 229, 1-17 (1979).
  17. Larson, R. B. & Tinsley, B. M. Astrophys. J. 219, 48-58 (1978).
  18. Sprayberry, D., Bernstein, G. M., Impey, C. D. & Bothun, G. D. Astrophys. J. 438, 72-82 (1995).
  19. van der Hulst, J. M., Skillman, E. D., Smith, T. R., Bothun, G. D., McGaugh, S. S. & de Blok, W. J. G. Astr. J. 106, 548-559 (1993).
  20. de Blok, W. J. G., McGaugh, S. S., & van der Hulst, J. M. Mon. Not. R. astr. Soc. (submitted).
  21. McGaugh, S. S., & Bothun, G. D. Astr. J. 107, 530-542 (1994).
  22. de Blok, W. J. G., van der Hulst, J. M., & Bothun, G. D. Mon. Not. R. astr. Soc. 274, 235-259 (1995).
  23. Ronnback, J., & Bergvall, N. Astr. Astrophys., 292, 360-378 (1994).
  24. de Jong, R. S. Ph.D. thesis, University of Groningen (1995).
  25. Mo, H. J., McGaugh, S. S. & Bothun, G. D. Mon. Not. R. astr. Soc. 267, 129-140 (1994).
  26. Dalcanton, J. J., Spergel, D. N., Summers, F. J. Astrophys. J., (in press).
  27. McGaugh, S. S. Astrophys. J. 426, 135-149 (1994).
  28. Ronnback, J., & Bergvall, N. Astr. Astrophys., 302, 353-359 (1995).
  29. Kuijken, K. & Gilmore, G. Mon. Not. R. astr. Soc., 239, 605-649 (1989).
  30. Schombert, J. M., Bothun, G. D., Impey, C. D., & Mundy, L. G. Astron. J., 100, 1523-1529 (1990).
  31. Wilson, C. D. Astrophys. J. 448, L97-L100 (1995).
  32. Moore, B. Nature 370, 629-631 (1994).
  33. Navarro, J. F., Frenk, C. S., & White, S. D. M. Mon. Not. R. astr. Soc., 275, 720-728 (1995).
  34. Cole, S. & Lacey, C. Mon. Not. R. astr. Soc., in press.
  35. Flores, R. A. & Primack, J. R. Astrophys. J. 427, 1-4 (1994).
  36. Sanders, R. H., & Begeman, K. G. Mon. Not. R. astr. Soc. 266, 360-366 (1994).
  37. The, L. S., & White, S. D. M. Astron. J., 95, 1642-1651 (1988).
  38. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. Nature 366, 429-433 (1993).
  39. Sanders, R. H. Astron. Astrophys. 284, L31-L34 (1994).
  40. Bolte, M., & Hogan, C. J. Nature 376, 399-402 (1995).
  41. Bekenstein, J. D. & Sanders, R. H. Astrophys. J. 429, 480-490 (1994).
  42. Broeils, A. H., Ph.D. thesis, Univ. of Groningen (1992).

Statistical detection of the external field effect from large scale structure

Statistical detection of the external field effect from large scale structure

A unique prediction of MOND

One curious aspect of MOND as a theory is the External Field Effect (EFE). The modified force law depends on an absolute acceleration scale, with motion being amplified over the Newtonian expectation when the force per unit mass falls below the critical acceleration scale a0 = 1.2 x 10-10 m/s/s. Usually we consider a galaxy to be an island universe: it is a system so isolated that we need consider only its own gravity. This is an excellent approximation in most circumstances, but in principle all sources of gravity from all over the universe matter.

The EFE in dwarf satellite galaxies

An example of the EFE is provided by dwarf satellite galaxies – small galaxies orbiting a larger host. It can happen that the stars in such a dwarf feel a stronger acceleration towards the host than to each other – the external field exceeds the internal self-gravity of the dwarf . In this limit, they’re more a collection of stars in a common orbit around the larger host than they are a self-gravitating island universe.

A weird consequence of the EFE in MOND is that a dwarf galaxy orbiting a large host will behave differently than it would if it were isolated in the depths of intergalactic space. MOND obeys the Weak Equivalence Principle but does not obey local position invariance. That means it violates the Strong Equivalence Principle while remaining consistent with the Einstein Equivalence Principle, a subtle but important distinction about how gravity self-gravitates.

Nothing like this happens conventionally, with or without dark matter. Gravity is local; it doesn’t matter what the rest of the universe is doing. Larger systems don’t impact smaller ones except in the extreme of tidal disruption, where the null geodesics diverge within the lesser object because it is no longer small compared to the gradient in the gravitational field. An amusing, if extreme, example is spaghettification. The EFE in MOND is a much subtler effect: when near a host, there is an extra source of acceleration, so a dwarf satellite is not as deep in the MOND regime as the equivalent isolated dwarf. Consequently, there is less of a boost from MOND: stars move a little slower, and conventionally one would infer a bit less dark matter.

The importance of the EFE in dwarf satellite galaxies is well documented. It was essential to the a priori prediction of the velocity dispersion in Crater 2 (where MOND correctly anticipated a velocity dispersion of just 2 km/s where the conventional expectation with dark matter was more like 17 km/s) and to the correct prediction of that for NGC 1052-DF2 (13 rather than 20 km/s). Indeed, one can see the difference between isolated and EFE cases in matched pairs of dwarfs satellites of Andromeda. Andromeda has enough satellites that one can pick out otherwise indistinguishable dwarfs where one happens to be subject to the EFE while its twin is practically isolated. The speeds of stars in the dwarfs affected by the EFE are consistently lower, as predicted. For example, the relatively isolated dwarf satellite of Andromeda known as And XXVIII has a velocity dispersion of 5 km/s, while its near twin And XVII (which has very nearly the same luminosity and size) is affected by the EFE and consequently has a velocity dispersion of only 3 km/s.

The case of dwarf satellites is the most obvious place where the EFE occurs. In principle, it applies everywhere all the time. It is most obvious in dwarf satellites because the external field can be comparable to or even greater than the internal field. In principle, the EFE also matters even when smaller than the internal field, albeit only a little bit: the extra acceleration causes an object to be not quite as deep in the MOND regime.

The EFE from large scale structure

Even in the depths of intergalactic space, there is some non-zero acceleration due to everything else in the universe. This is very reminiscent of Mach’s Principle, which Einstein reputedly struggled hard to incorporate into General Relativity. I’m not going to solve that in a blog post, but note that MOND is much more in the spirit of Mach and Lorenz and Einstein than its detractors generally seem to presume.

Here I describe the apparent detection of the subtle effect of a small but non-zero background acceleration field. This is very different from the case of dwarf satellites where the EFE can exceed the internal field. It is just a small tweak to the dominant internal fields of very nearly isolated island universes. It’s like the lapping of waves on their shores: hardly relevant to the existence of the island, but a pleasant feature as you walk along the beach.

The universe has structure; there are places with lots of galaxies (groups, clusters, walls, sheets) and other places with very few (voids). This large scale structure should impose a low-level but non-zero acceleration field that should vary in amplitude from place to place and affect all galaxies in their outskirts. For this reason, we do not expect rotation curves to remain flat forever; even in MOND, there comes an over-under point where the gravity of everything else takes over from any individual object. A test particle at the see-saw balance point between the Milky Way and Andromeda may not know which galaxy to call daddy, but it sure knows they’re both there. The background acceleration field matters to such diverse subjects as groups of galaxies and Lyman alpha absorbers at high redshift.

As an historical aside, Lyman alpha absorbers at high redshift were initially found to deviate from MOND by many orders of magnitude. That was withoug the EFE. With the EFE, the discrepancy is much smaller, but persists. The amplitude of the EFE at high redshift is very uncertain. I expect it is higher in MOND than estimated because structure forms fast in MOND; this might suffice to solve the problem. Whether or not this is the case, it makes a good example of how a simple calculation can make MOND seem way off when it isn’t. If I had a dollar for every time I’ve seen that happen, I could fly first class.

I made an early estimate of the average intergalactic acceleration field, finding the typical environmental acceleration eenv to be about 2% of a0 (eenv ~ 2.6 x 10-12 m/s/s, see just before eq. 31). This is highly uncertain and should be location dependent, differing a lot from voids to richer environments. It is hard to find systems that probe much below 10% of a0, and the effect it would cause on the average (non-satellite) galaxy is rather subtle, so I have mostly neglected this background acceleration as, well, pretty negligible.

This changed recently thanks to Kyu-Hyun Chae and Harry Desmond. We met at a conference in Bonn a year ago September. (Remember travel? I used to complain about how much travel work involved. Now I miss it – especially as experience demonstrates that some things really do require in-person interaction.) Kyu thought we should be able to tease out the EFE from SPARC data in a statistical way, and Harry offered to make a map of the environmental acceleration based on the locations of known galaxies. This is a distinct improvement over the crude average of my ancient first estimate as it specifies the EFE that ought to occur at the location of each individual galaxy. The results of this collaboration were recently published open-access in the Astrophysical Journal.

This did not come easily. I think I mentioned that the predicted effect is subtle. We’re no longer talking about the effect of a big host on a tiny dwarf up close to it. We’re talking about the background of everything on giant galaxies. Space is incomprehensibly vast, so every galaxy is far, far away, and the expected effect is small. So my first reaction was “Sure. Great idea. No way can we do this with current data.” I am please to report that I was wrong: with lots of hard work, perseverance, and the power of Bayesian statistics, we have obtained a positive detection of the EFE.

One reason for my initial skepticism was the importance of data quality. The rotation curves in SPARC are a heterogeneous lot, being the accumulated work of an entire community of radio astronomers over the course of several decades. Some galaxies are bright and their data stupendous, others… not so much. Having started myself working on low surface brightness galaxies – the least stupendous of them all – and having spent much of the past quarter century working long and hard to improve the data, I tend to be rather skeptical of what can be accomplished.

An example of a galaxy with good data is NGC 5055 (aka M63, aka the Sunflower galaxy, pictured atop as viewed by the Hubble Space Telescope). NGC 5055 happens to reside in a relatively high acceleration environment for a spiral, with eenv ~ 9% of a0. For comparison, the acceleration at the last measured point of its rotation curve is about 15% of a0. So they’re within a factor of two, which is pretty much the strongest effect in the whole sample. This additional bit of acceleration means NGC 5055 is not quite as deep in the MOND regime as it would be all by its lonesome, with the net effect that the rotation curve is predicted to decline a little bit faster than it would in the isolated case, as you can see in the figure below. See that? Or is it too subtle? I think I mentioned the effect was pretty subtle.

The rotation curve of NGC 5055 (velocity in km/s vs. radius in kpc). The blue and green bands are the rotation expected from the observed stars and gas. The red band is the MOND fit with (left) and without (right) the external field effect (EFE) from Chae et al. ΔBIC is a statistical measure that indicates that the fit with the EFE is a meaningful improvement over that without (in technical terms, “way better”).

That this case works well is encouraging. I like to start with a good case: if you can’t see what you’re looking for in the best of the data, stop. But I still didn’t hold out much hope for the rest of the sample. Then Kyu showed that the most isolated galaxies – those subject to the lowest environmental accelerations – showed no effect. That sounds boring, but null results are important. It could happen that the environmental acceleration was a promiscuous free parameter that appears to improve a fit without really adding any value. That it declined to do that in cases where it shouldn’t was intriguing. The galaxies in the most extreme environments show an effect when they should, but don’t when they shouldn’t.

Statistical detection of the EFE

Statistics become useful for interpreting the entirety of the large sample of galaxies. Because of the variability in data quality, we knew some cases would go astray. But we only need to know if the fit for any galaxy is improved relative to the case where the EFE is neglected, so each case sets its own standard. This relative measure is more robust than analyses that require an assessment of the absolute fit quality. All we’re really asking the data is whether the presence of an EFE helps. To my initial and ongoing amazement, it does.

The environmental acceleration predicted by the distribution of known galaxies, eenv, against the amplitude e of an external field that provides the best-fit to each rotation curve (Fig. 5 of Chae et al).

The figure above shows the amplitude of the EFE that best fits each rotation curve along the x-axis. The median is 5% of a0. This is non-zero at 4.7σ, and our detection of the EFE is comparable in quality to that of the Baryon Acoustic Oscillation or the accelerated expansion of the universe when these were first accepted. Of course, these were widely anticipated effects, while the EFE is expected only in MOND. Personally, I think it is a mistake to obsess over the number of σ, which is not as robust as people like to think. I am more impressed that the peak of the color map (the darkest color in the data density map above) is positive definite and clearly non-zero.

Taken together, the data prefer a small but clearly non-zero EFE. That’s a statistical statement for the whole sample. Of course, the amplitude (e) of the EFE inferred for individual galaxies is uncertain, and is occasionally negative. This is unphysical: it shouldn’t happen. Nevertheless, it is statistically expected given the amount of uncertainty in the data: for error bars this size, some of the data should spill over to e < 0.

I didn’t initially think we could detect the EFE in this way because I expected that the error bars would wash out the effect. That is, I expected the colored blob above would be smeared out enough that the peak would encompass zero. That’s not what happened, me of little faith. I am also encouraged that the distribution skews positive: the error bars scatter points in both direction, and wind up positive more often than negative. That’s an indication that they started from an underlying distribution centered on e > 0, not e = 0.

The y-axis in the figure above is the estimate of the environmental acceleration based on the 2M++ galaxy catalog. This is entirely independent of the best fit e from rotation curves. It is the expected EFE from the distribution of mass that we know about. The median environmental EFE found in this way is 3% of a0. This is pretty close to the 2% I estimated over 20 years ago. Given the uncertainties, it is quite compatible with the median of 5% found from the rotation curve fits.

In an ideal world where all quantities are perfectly known, there would be a correlation between the external field inferred from the best fit to the rotation curves and that of the environment predicted by large scale structure. We are nowhere near to that ideal. I can conceive of improving both measurements, but I find it hard to imagine getting to the point where we can see a correlation between e and eenv. The data quality required on both fronts would be stunning.

Then again, I never thought we could get this far, so I am game to give it a go.

Oh… you don’t want to look in there

Oh… you don’t want to look in there

This post is a recent conversation with David Garofalo for his blog.


Today we talk to Dr. Stacy McGaugh, Chair of the Astronomy Department at Case Western Reserve University.

David: Hi Stacy. You had set out to disprove MOND and instead found evidence to support it. That sounds like the poster child for how science works. Was praise forthcoming?

Stacy: In the late 1980s and into the 1990s, I set out to try to understand low surface brightness galaxies. These are diffuse systems of stars and gas that rotate like the familiar bright spirals, but whose stars are much more spread out. Why? How did these things come to be? Why were they different from brighter galaxies? How could we explain their properties? These were the problems I started out working on that inadvertently set me on a collision course with MOND.

I did not set out to prove or disprove either MOND or dark matter. I was not really even aware of MOND at that time. I had head of it only on a couple of occasions, but I hadn’t payed any attention, and didn’t really know anything about it. Why would I bother? It was already well established that there had to be dark matter.

I worked to develop our understanding of low surface brightness galaxies in the context of dark matter. Their blue colors, low metallicities, high gas fractions, and overall diffuse nature could be explained if they had formed in dark matter halos that are themselves lower than average density: they occupy the low concentration side of the distribution of dark matter halos at a given mass. I found this interpretation quite satisfactory, so gave me no cause to doubt dark matter to that point.

This picture made two genuine predictions that had yet to be tested. First, low surface brightness galaxies should be less strongly clustered than brighter galaxies. Second, having their mass spread over a larger area, they should shift off of the Tully-Fisher relation defined by denser galaxies. The first prediction came true, and for a period I was jubilant that we had made an important new contribution to out understanding of both galaxies and dark matter. The second prediction failed badly: low surface brightness galaxies adhere to the same Tully-Fisher relation that other galaxies follow.

I tried desperately to understand the failure of the second prediction in terms of dark matter. I tried what seemed like a thousand ways to explain this, but ultimately they were all tautological: I could only explain it if I assumed the answer from the start. The adherence of low surface brightness galaxies to the Tully-Fisher relation poses a serious fine-tuning problem: the distribution of dark matter must be adjusted to exactly counterbalance that of the visible matter so as not to leave any residuals. This makes no sense, and anyone who claims it does is not thinking clearly.

It was in this crisis of comprehension in which I became aware that MOND predicted exactly what I was seeing. No fine-tuning was required. Low surface brightness galaxies followed the same Tully-Fisher relation as other galaxies because the modified force law stipulates that they must. It was only at this point (in the mid-’90s) at which I started to take MOND seriously. If it had got this prediction right, what else did it predict?

I was still convinced that the right answer had to be dark matter. There was, after all, so much evidence for it. So this one prediction must be a fluke; surely it would fail the next test. That was not what happened: MOND passed test after test after test, successfully predicting observations both basic and detailed that dark matter theory got wrong or did not even address. It was only after this experience that I realized that what I thought was evidence for dark matter was really just evidence that something was wrong: the data cannot be explained with ordinary gravity without invisible mass. The data – and here I mean ALL the data – were mostly ambiguous: they did not clearly distinguish whether the problem was with mass we couldn’t see or with the underlying equations from which we inferred the need for dark matter.

So to get back to your original question, yes – this is how science should work. I hadn’t set out to test MOND, but I had inadvertently performed exactly the right experiment for that purpose. MOND had its predictions come true where the predictions of other theories did not: both my own theory and those of others who were working in the context of dark matter. We got it wrong while MOND got it right. That led me to change my mind: I had been wrong to be sure the answer had to be dark matter, and to be so quick to dismiss MOND. Admitting this was the most difficult struggle I ever faced in my career.

David: From the perspective of dark matter, how does one understand MOND’s success?

Stacy: One does not.

That the predictions of MOND should come true in a universe dominated by dark matter makes no sense.

Before I became aware of MOND, I spent lots of time trying to come up with dark matter-based explanations for what I was seeing. It didn’t work. Since then, I have continued to search for a viable explanation with dark matter. I have not been successful. Others have claimed such success, but whenever I look at their work, it always seems that what they assert to be a great success is just a specific elaboration of a model I had already considered and rejected as obviously unworkable. The difference boils down to Occam’s razor. If you give dark matter theory enough free parameters, it can be adjusted to “predict” pretty much anything. But the best we can hope to do with dark matter theory is to retroactively explain what MOND successfully predicted in advance. Why should we be impressed by that?

David: Does MOND fail in clusters?

Stacy: Yes and no: there are multiple tests in clusters. MOND passes some and flunks others – as does dark matter.

The most famous test is the baryon fraction. This should be one in MOND – all the mass is normal baryonic matter. With dark matter, it should be the cosmic ratio of normal to dark matter (about 1:5).

MOND fails this test: it explains most of the discrepancy in clusters, but not all of it. The dark matter picture does somewhat better here, as the baryon fraction is close to the cosmic expectation — at least for the richest clusters of galaxies. In smaller clusters and groups of galaxies, the normal matter content falls short of the cosmic value. So both theories suffer a “missing baryon” problem: MOND in rich clusters; dark matter in everything smaller.

Another test is the mass-temperature relation. Both theories predict a relation between the mass of a cluster and the temperature of the gas it contains, but they predict different slopes for this relation. MOND gets the slope right but the amplitude wrong, leading to the missing baryon problem above. Dark matter gets the amplitude right for the most massive clusters, but gets the slope wrong – which leads to it having a missing baryon problem for systems smaller than the largest clusters.

There are other tests. Clusters continue to merge; the collision velocity of merging clusters is predicted to be higher in MOND than with dark matter. For example, the famous bullet cluster, which is often cited as a contradiction to MOND, has a collision speed that is practically impossible with dark matter: there just isn’t enough time for the two components of the bullet to accelerate up to the observed relative speed if they fall together under the influence of normal gravity and the required amount of dark mass. People have argued over the severity of this perplexing problem, but the high collision speed happens quite naturally in MOND as a consequence of its greater effective force of attraction. So, taken at face value, the bullet cluster both confirms and refutes both theories!

I could go on… one expects clusters to form earlier and become more massive in MOND than in dark matter. There are some indications that this is the case – the highest redshift clusters came as a surprise to conventional structure formation theory – but the relative numbers of clusters as a function of mass seems to agree well with current expectations with dark matter. So clusters are a mixed bag.

More generally, there is a widespread myth that MOND fits rotation curves, but gets nothing else right. This is what I expected to find when I started fact checking, but the opposite is true. MOND explains a huge variety of data well. The presumptive superiority of dark matter is just that – a presumption.

David: At a physics colloquium two decades ago, Vera Rubin described how theorists were willing and eager to explain her data to her. At an astronomy colloquium a few years later, you echoed that sentiment in relation to your data on velocity curves. One concludes that theorists are uniquely insightful and generous people. Is there anyone you would like to thank for putting you straight? 
 
Stacy:  So they perceive themselves to be.

MOND has made many successful a priori predictions. This is the golden standard of the scientific method. If there is another explanation for it, I’d like to know what it is.

As your questions supposes, many theorists have offered such explanations. At most one of them can be correct. I have yet to hear a satisfactory explanation.


David: What are MOND people working on these days? 
 
Stacy: Any problem that is interesting in extragalactic astronomy is interesting in the context of MOND. Outstanding questions include planes of satellite dwarf galaxies, clusters of galaxies, the formation of large scale structure, and the microwave background. MOND-specific topics include the precise value of the MOND acceleration constant, predicting the velocity dispersions of dwarf galaxies, and the search for the predicted external field effect, which is a unique signature of MOND.

The phrasing of this question raises a sociological issue. I don’t know what a “MOND person” is. Before now, I have only heard it used as a pejorative.

I am a scientist who has worked on many topics. MOND is just one of them. Does that make me a “MOND person”? I have also worked on dark matter, so am I also a “dark matter person”? Are these mutually exclusive?

I have attended conferences where I have heard people say ‘“MOND people” do this’ or ‘“MOND people” fail to do that.’ Never does the speaker of these words specify who they’re talking about: “MOND people” are a nameless Other. In all cases, I am more familiar with the people and the research they pretend to describe, but in no way do I recognize what they’re talking about. It is just a way of saying “Those People” are Bad.

There are many experts on dark matter in the world. I am one of them. There are rather fewer experts on MOND. I am also one of them. Every one of these “MOND people” is also an expert on dark matter. This situation is not reciprocated: many experts on dark matter are shockingly ignorant about MOND. I was once guilty of that myself, but realized that ignorance is not a sound basis on which to base a scientific judgement.

David: Are you tired of getting these types of questions? 
 
Stacy: Yes and no.

No, in that these are interesting questions about fundamental science. That is always fun to talk about.

Yes, in that I find myself having the same arguments over and over again, usually with scientists who remain trapped in the misconceptions I suffered myself a quarter century ago, but whose minds are closed to ideas that threaten their sacred cows. If dark matter is a real, physical substance, then show me a piece already.

Big Trouble in a Deep Void

Big Trouble in a Deep Void

The following is a guest post by Indranil Banik, Moritz Haslbauer, and Pavel Kroupa (bios at end) based on their new paper

Modifying gravity to save cosmology

Cosmology is currently in a major crisis because of many severe tensions, the most serious and well-known being that local observations of how quickly the Universe is expanding (the so-called ‘Hubble constant’) exceed the prediction of the standard cosmological model, ΛCDM. This prediction is based on the cosmic microwave background (CMB), the most ancient light we can observe – which is generally thought to have been emitted about 400,000 years after the Big Bang. For ΛCDM to fit the pattern of fluctuations observed in the CMB by the Planck satellite and other experiments, the Hubble constant must have a particular value of 67.4 ± 0.5 km/s/Mpc. Local measurements are nearly all above this ‘Planck value’, but are consistent with each other. In our paper, we use a local value of 73.8 ± 1.1 km/s/Mpc using a combination of supernovae and gravitationally lensed quasars, two particularly precise yet independent techniques.

This unexpectedly rapid local expansion of the Universe could be due to us residing in a huge underdense region, or void. However, a void wide and deep enough to explain the Hubble tension is not possible in ΛCDM, which is built on Einstein’s theory of gravity, General Relativity. Still, there is quite strong evidence that we are indeed living within a large void with a radius of about 300 Mpc, or one billion light years. This evidence comes from many surveys covering the whole electromagnetic spectrum, from radio to X-rays. The most compelling evidence comes from analysis of galaxy number counts in the near-infrared, giving the void its name of the Keenan-Barger-Cowie (KBC) void. Gravity from matter outside the void would pull more than matter inside it, making the Universe appear to expand faster than it actually is for an observer inside the void. This ‘Hubble bubble’ scenario (depicted in Figure 1) could solve the Hubble tension, a possibility considered – and rejected – in several previous works (e.g. Kenworthy+ 2019). We will return to their objections against this idea.

Figure 1: Illustration of the Universe’s large scale structure. The darker regions are voids, and the bright dots represent galaxies. The arrows show how gravity from surrounding denser regions pulls outwards on galaxies in a void. If we were living in such a void (as indicated by the yellow star), the Universe would expand faster locally than it does on average. This could explain the Hubble tension. Credit: Technology Review

One of the main objections seemed to be that since such a large and deep void is incompatible with ΛCDM, it can’t exist. This is a common way of thinking, but the problem with it was clear to us from a very early stage. The first part of this logic is sound – assuming General Relativity, a hot Big Bang, and that the state of the Universe at early times is apparent in the CMB (i.e. it was flat and almost homogeneous then), we are led to the standard flat ΛCDM model. By studying the largest suitable simulation of this model (called MXXL), we found that it should be completely impossible to find ourselves inside a void with the observed size and depth (or fractional underdensity) of the KBC void – this possibility can be rejected with more confidence than the discovery of the Higgs boson when first announced. We therefore applied one of the leading alternative gravity theories called Milgromian Dynamics (MOND), a controversial idea developed in the early 1980s by Israeli physicist Mordehai Milgrom. We used MOND (explained in a simple way here) to evolve a small density fluctuation forwards from early times, studying if 13 billion years later it fits the density and velocity field of the local Universe. Before describing our results, we briefly introduce MOND and explain how to use it in a potentially viable cosmological framework. Astronomers often assume MOND cannot be extended to cosmological scales (typically >10 Mpc), which is probably true without some auxiliary assumptions. This is also the case for General Relativity, though in that case the scale where auxiliary assumptions become crucial is only a few kpc, namely in galaxies.

MOND was originally designed to explain why galaxies rotate faster in their outskirts than they should if one applies General Relativity to their luminous matter distribution. This discrepancy gave rise to the idea of dark matter halos around individual galaxies. For dark matter to cluster on such scales, it would have to be ‘cold’, or equivalently consist of rather heavy particles (above a few thousand eV/c2, or a millionth of a proton mass). Any lighter and the gravity from galaxies could not hold on to the dark matter. MOND assumes these speculative and unexplained cold dark matter haloes do not exist – the need for them is after all dependent on the validity of General Relativity. In MOND once the gravity from any object gets down to a certain very low threshold called a0, it declines more gradually with increasing distance, following an inverse distance law instead of the usual inverse square law. MOND has successfully predicted many galaxy rotation curves, highlighting some remarkable correlations with their visible mass. This is unexpected if they mostly consist of invisible dark matter with quite different properties to visible mass. The Local Group satellite galaxy planes also strongly favour MOND over ΛCDM, as explained using the logic of Figure 2 and in this YouTube video.

Figure 2: the satellite galaxies of the Milky Way and Andromeda mostly lie within thin planes. These are difficult to form unless the galaxies in them are tidal dwarfs born from the interaction of two major galaxies. Since tidal dwarfs should be free of dark matter due to the way they form, the satellites in the satellite planes should have rather weak self-gravity in ΛCDM. This is not the case as measured from their high internal velocity dispersions. So the extra gravity needed to hold galaxies together should not come from dark matter that can in principle be separated from the visible.

To extend MOND to cosmology, we used what we call the νHDM framework (with ν pronounced “nu”), originally proposed by Angus (2009). In this model, the cold dark matter of ΛCDM is replaced by the same total mass in sterile neutrinos with a mass of only 11 eV/c2, almost a billion times lighter than a proton. Their low mass means they would not clump together in galaxies, consistent with the original idea of MOND to explain galaxies with only their visible mass. This makes the extra collisionless matter ‘hot’, hence the name of the model. But this collisionless matter would exist inside galaxy clusters, helping to explain unusual configurations like the Bullet Cluster and the unexpectedly strong gravity (even in MOND) in quieter clusters. Considering the universe as a whole, νHDM has the same overall matter content as ΛCDM. This makes the overall expansion history of the universe very similar in both models, so both can explain the amounts of deuterium and helium produced in the first few minutes after the Big Bang. They should also yield similar fluctuations in the CMB because both models contain the same amount of dark matter. These fluctuations would get somewhat blurred by sterile neutrinos of such a low mass due to their rather fast motion in the early Universe. However, it has been demonstrated that Planck data are consistent with dark matter particles more massive than 10 eV/c2. Crucially, we showed that the density fluctuations evident in the CMB typically yield a gravitational field strength of 21 a0 (correcting an earlier erroneous estimate of 570 a0 in the above paper), making the gravitational physics nearly identical to General Relativity. Clearly, the main lines of early Universe evidence used to argue in favour of ΛCDM are not sufficiently unique to distinguish it from νHDM (Angus 2009).

The models nonetheless behave very differently later on. We estimated that for redshifts below about 50 (when the Universe is older than about 50 million years), the gravity would typically fall below a0 thanks to the expansion of the Universe (the CMB comes from a redshift of 1100). After this ‘MOND moment’, both the ordinary matter and the sterile neutrinos would clump on large scales just like in ΛCDM, but there would also be the extra gravity from MOND. This would cause structures to grow much faster (Figure 3), allowing much wider and deeper voids.


Figure 3: Evolution of the density contrast within a 300 co-moving Mpc sphere in different Newtonian (red) and MOND (blue) models, shown as a function of the Universe’s size relative to its present size (this changes almost linearly with time). Notice the much faster structure growth in MOND. The solid blue line uses a time-independent external field on the void, while the dot-dashed blue line shows the effect of a stronger external field in the past. This requires a deeper initial void to match present-day observations.

We used this basic framework to set up a dynamical model of the void. By making various approximations and trying different initial density profiles, we were able to simultaneously fit the apparent local Hubble constant, the observed density profile of the KBC void, and many other observables like the acceleration parameter, which we come to below. We also confirmed previous results that the same observables rule out standard cosmology at 7.09σ significance. This is much more than the typical threshold of 5σ used to claim a discovery in cases like the Higgs boson, where the results agree with prior expectations.

One objection to our model was that a large local void would cause the apparent expansion of the Universe to accelerate at late times. Equivalently, observations that go beyond the void should see a standard Planck cosmology, leading to a step-like behaviour near the void edge. At stake is the so-called acceleration parameter q0 (which we defined oppositely to convention to correct a historical error). In ΛCDM, we expect q0 = 0.55, while in general much higher values are expected in a Hubble bubble scenario. The objection of Kenworthy+ (2019) was that since the observed q0 is close to 0.55, there is no room for a void. However, their data analysis fixed q0 to the ΛCDM expectation, thereby removing any hope of discovering a deviation that might be caused by a local void. Other analyses (e.g. Camarena & Marra 2020b) which do not make such a theory-motivated assumption find q0 = 1.08, which is quite consistent with our best-fitting model (Figure 4). We also discussed other objections to a large local void, for instance the Wu & Huterer (2017) paper which did not consider a sufficiently large void, forcing the authors to consider a much deeper void to try and solve the Hubble tension. This led to some serious observational inconsistencies, but a larger and shallower void like the observed KBC void seems to explain the data nicely. In fact, combining all the constraints we applied to our model, the overall tension is only 2.53σ, meaning the data have a 1.14% chance of arising if ours were the correct model. The actual observations are thus not the most likely consequence of our model, but could plausibly arise if it were correct. Given also the high likelihood that some if not all of the observational errors we took from publications are underestimates, this is actually a very good level of consistency.

Figure 4: The predicted local Hubble constant (x-axis) and acceleration parameter (y-axis) as measured with local supernovae (black dot, with red error ellipses). Our best-fitting models with different initial void density profiles (blue symbols) can easily explain the observations. However, there is significant tension with the prediction of ΛCDM based on parameters needed to fit Planck observations of the CMB (green dot). In particular, local observations favour a higher acceleration parameter, suggestive of a local void.

Unlike other attempts to solve the Hubble tension, ours is unique in using an already existing theory (MOND) developed for a different reason (galaxy rotation curves). The use of unseen collisionless matter made of hypothetical sterile neutrinos is still required to explain the properties of galaxy clusters, which otherwise do not sit well with MOND. In addition, these neutrinos provide an easy way to explain the CMB and background expansion history, though recently Skordis & Zlosnik (2020) showed that this is possible in MOND with only ordinary matter. In any case, MOND is a theory of gravity, while dark matter is a hypothesis that more matter exists than meets the eye. The ideas could both be right, and should be tested separately.

A dark matter-MOND hybrid thus appears to be a very promising way to resolve the current crisis in cosmology. Still, more work is required to construct a fully-fledged relativistic MOND theory capable of addressing cosmology. This could build on the theory proposed by Skordis & Zlosnik (2019) in which gravitational waves travel at the speed of light, which was considered to be a major difficulty for MOND. We argued that such a theory would enhance structure formation to the required extent under a wide range of plausible theoretical assumptions, but this needs to be shown explicitly starting from a relativistic MOND theory. Cosmological structure formation simulations are certainly required in this scenario – these are currently under way in Bonn. Further observations would also help greatly, especially of the matter density in the outskirts of the KBC void at distances of about 500 Mpc. This could hold vital clues to how quickly the void has grown, helping to pin down the behaviour of the sought-after MOND theory.

There is now a very real prospect of obtaining a single theory that works across all astronomical scales, from the tiniest dwarf galaxies up to the largest structures in the Universe & its overall expansion rate, and from a few seconds after the birth of the Universe until today. Rather than argue whether this theory looks more like MOND or standard cosmology, what we should really do is combine the best elements of both, paying careful attention to all observations.


Authors

Indranil Banik is a Humboldt postdoctoral fellow in the Helmholtz Institute for Radiation and Nuclear Physics (HISKP) at the University of Bonn, Germany. He did his undergraduate and masters at Trinity College, Cambridge, and his PhD at Saint Andrews under Hongsheng Zhao. His research focuses on testing whether gravity continues to follow the Newtonian inverse square law at the low accelerations typical of galactic outskirts, with MOND being the best-developed alternative.

Moritz Haslbauer is a PhD student at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. He obtained his undergraduate degree from the University of Vienna and his masters from the University of Bonn. He works on the formation and evolution of galaxies and their distribution in the local Universe in order to test different cosmological models and gravitational theories. Prof. Pavel Kroupa is his PhD supervisor.

Pavel Kroupa is a professor at the University of Bonn and professorem hospitem at Charles University in Prague. He went to school in Germany and South Africa, studied physics in Perth, Australia, and obtained his PhD at Trinity College, Cambridge, UK. He researches stellar populations and their dynamics as well as the dark matter problem, therewith testing gravitational theories and cosmological models.

Link to the published science paper.

YouTube video on the paper

Contact: ibanik@astro.uni-bonn.de.

Indranil Banik’s YouTube channel.

A Significant Theoretical Advance

A Significant Theoretical Advance

The missing mass problem has been with us many decades now. Going on a century if you start counting from the work of Oort and Zwicky in the 1930s. Not quite a half a century if we date it from the 1970s when most of the relevant scientific community started to take it seriously. Either way, that’s a very long time for a major problem to go unsolved in physics. The quantum revolution that overturned our classical view of physics was lightning fast in comparison – see the discussion of Bohr’s theory in the foundation of quantum mechanics in David Merritt’s new book.

To this day, despite tremendous efforts, we have yet to obtain a confirmed laboratory detection of a viable dark matter particle – or even a hint of persuasive evidence for the physics beyond the Standard Model of Particle Physics (e.g., supersymmetry) that would be required to enable the existence of such particles. We cannot credibly claim (as many of my colleagues insist they can) to know that such invisible mass exists. All we really know is that there is a discrepancy between what we see and what we get: the universe and the galaxies within it cannot be explained by General Relativity and the known stable of Standard Model particles.

If we assume that General Relativity is both correct and sufficient to explain the universe, which seems like a very excellent assumption, then we are indeed obliged to invoke non-baryonic dark matter. The amount of astronomical evidence that points in this direction is overwhelming. That is how we got to where we are today: once we make the obvious, imminently well-motivated assumption, then we are forced along a path in which we become convinced of the reality of the dark matter, not merely as a hypothetical convenience to cosmological calculations, but as an essential part of physical reality.

I think that the assumption that General Relativity is correct is indeed an excellent one. It has repeatedly passed many experimental and observational tests too numerous to elaborate here. However, I have come to doubt the assumption that it suffices to explain the universe. The only data that test it on scales where the missing mass problem arises is the data from which we infer the existence of dark matter. Which we do by assuming that General Relativity holds. The opportunity for circular reasoning is apparent – and frequently indulged.

It should not come as a shock that General Relativity might not be completely sufficient as a theory in all circumstances. This is exactly the motivation for and the working presumption of quantum theories of gravity. That nothing to do with cosmology will be affected along the road to quantum gravity is just another assumption.

I expect that some of my colleagues will struggle to wrap their heads around what I just wrote. I sure did. It was the hardest thing I ever did in science to accept that I might be wrong to be so sure it had to be dark matter – because I was sure it was. As sure of it as any of the folks who remain sure of it now. So imagine my shock when we obtained data that made no sense in terms of dark matter, but had been predicted in advance by a completely different theory, MOND.

When comparing dark matter and MOND, one must weigh all evidence in the balance. Much of the evidence is gratuitously ambiguous, so the conclusion to which one comes depends on how one weighs the more definitive lines of evidence. Some of this points very clearly to MOND, while other evidence prefers non-baryonic dark matter. One of the most important lines of evidence in favor of dark matter is the acoustic power spectrum of the cosmic microwave background (CMB) – the pattern of minute temperature fluctuations in the relic radiation field imprinted on the sky a few hundred thousand years after the Big Bang.

The equations that govern the acoustic power spectrum require General Relativity, but thankfully the small amplitude of the temperature variations permits them to be solved in the limit of linear perturbation theory. So posed, they can be written as a damped and driven oscillator. The power spectrum favors features corresponding to standing waves at the epoch of recombination when the universe transitioned rather abruptly from an opaque plasma to a transparent neutral gas. The edge of a cloud provides an analog: light inside the cloud scatters off the water molecules and doesn’t get very far: the cloud is opaque. Any light that makes it to the edge of the cloud meets no further resistance, and is free to travel to our eyes – which is how we perceive the edge of the cloud. The CMB is the expansion-redshifted edge of the plasma cloud of the early universe.

An easy way to think about a damped and a driven oscillator is a kid being pushed on a swing. The parent pushing the child is a driver of the oscillation. Any resistance – like the child dragging his feet – damps the oscillation. Normal matter (baryons) damps the oscillations – it acts as a net drag force on the photon fluid whose oscillations we observe. If there is nothing going on but General Relativity plus normal baryons, we should see a purely damped pattern of oscillations in which each peak is smaller than the one before it, as seen in the solid line here:

CMB_Pl_CLonly
The CMB acoustic power spectrum predicted by General Relativity with no cold dark matter (line) and as observed by the Planck satellite (data points).

As one can see, the case of no Cold Dark Matter (CDM) does well to explain the amplitudes of the first two peaks. Indeed, it was the only hypothesis to successfully predict this aspect of the data in advance of its observation. The small amplitude of the second peak came as a great surprise from the perspective of LCDM. However, without CDM, there is only baryonic damping. Each peak should have a progressively lower amplitude. This is not observed. Instead, the third peak is almost the same amplitude as the second, and clearly higher than expected in the pure damping scenario of no-CDM.

CDM provides a net driving force in the oscillation equations. It acts like the parent pushing the kid. Even though the kid drags his feet, the parent keeps pushing, and the amplitude of the oscillation is maintained. For the third peak at any rate. The baryons are an intransigent child and keep dragging their feet; eventually they win and the power spectrum damps away on progressively finer angular scales (large 𝓁 in the plot).

As I wrote in this review, the excess amplitude of the third peak over the no-CDM prediction is the best evidence to my mind in favor of the existence of non-baryonic CDM. Indeed, this observation is routinely cited by many cosmologists to absolutely require dark matter. It is argued that the observed power spectrum is impossible without it. The corollary is that any problem the dark matter picture encounters is a mere puzzle. It cannot be an anomaly because the CMB tells us that CDM has to exist.

Impossible is a high standard. I hope the reader can see the flaw in this line of reasoning. It is the same as above. In order to compute the oscillation power spectrum, we have assumed General Relativity. While not replacing it, the persistent predictive successes of a theory like MOND implies the existence of a more general theory. We do not know that such a theory cannot explain the CMB until we develop said theory and work out its predictions.

That said, it is a tall order. One needs a theory that provides a significant driving term without a large amount of excess invisible mass. Something has to push the swing in a universe full of stuff that only drags its feet. That does seem nigh on impossible. Or so I thought until I heard a talk by Pedro Ferreira where he showed how the scalar field in TeVeS – the relativistic MONDian theory proposed by Bekenstein – might play the same role as CDM. However, he and his collaborators soon showed that the desired effect was indeed impossible, at least in TeVeS: one could not simultaneously fit the third peak and the data preceding the first. This was nevertheless an important theoretical development, as it showed how it was possible, at least in principle, to affect the peak ratios without massive amounts of non-baryonic CDM.

At this juncture, there are two options. One is to seek a theory that might work, and develop it to the point where it can be tested. This is a lot of hard work that is bound to lead one down many blind alleys without promise of ultimate success. The much easier option is to assume that it cannot be done. This is the option adopted by most cosmologists, who have spent the last 15 years arguing that the CMB power spectrum requires the existence of CDM. Some even seem to consider it to be a detection thereof, in which case we might wonder why we bother with all those expensive underground experiments to detect the stuff.

Rather fewer people have invested in the approach that requires hard work. There are a few brave souls who have tried it; these include Constantinos Skordis and Tom Złosnik. Very recently, the have shown a version of a relativistic MOND theory (which they call RelMOND) that does fit the CMB power spectrum. Here is the plot from their paper:

CMB_RelMOND_2020

Note that black line in their plot is the fit of the LCDM model to the Planck power spectrum data. Their theory does the same thing, so it necessarily fits the data as well. Indeed, a good fit appears to follow for a range of parameters. This is important, because it implies that little or no fine-tuning is needed: this is just what happens. That is arguably better than the case for LCDM, in which the fit is very fine-tuned. Indeed, that was a large point of making the measurement, as it requires a very specific set of parameters in order to work. It also leads to tensions with independent measurements of the Hubble constant, the baryon density, and the amplitude of the matter power spectrum at low redshift.

As with any good science result, this one raises a host of questions. It will take time to explore these. But this in itself is a momentous result. Irrespective if RelMOND is the right theory or, like TeVeS, just a step on a longer path, it shows that the impossible is in fact possible. The argument that I have heard repeated by cosmologists ad nauseam like a rosary prayer, that dark matter is the only conceivable way to explain the CMB power spectrum, is simply WRONG.

A Philosophical Approach to MOND

A Philosophical Approach to MOND is a new book by David Merritt. This is a major development in the both the science of cosmology and astrophysics, on the one hand, and the philosophy and history of science on the other. It should be required reading for anyone interested in any of these topics.

For many years, David Merritt was a professor of astrophysics who specialized in gravitational dynamics, leading a number of breakthroughs in the effects of supermassive black holes in galaxies on the orbits of stars around them. He has since transitioned to the philosophy of science. This may not sound like a great leap, but it is: these are different scholarly fields, each with their own traditions, culture, and required background education. Changing fields like this is a bit like switching boats mid-stream: even a strong swimmer may flounder in the attempt given the many boulders academic disciplines traditionally place in the stream of knowledge to mark their territory. Merritt has managed the feat with remarkable grace, devouring the background reading and coming up to speed in a different discipline to the point of a lucid fluency.

For the most part, practicing scientists have little interaction with philosophers and historians of science. Worse, we tend to have little patience for them. The baseline presumption of many physical scientists is that we know what we’re doing; there is nothing the philosophers can teach us. In the daily practice of what Kuhn called normal science, this is close to true. When instead we are faced with potential paradigm shifts, the philosophy of science is critical, and the absence of training in it on the part of many scientists becomes glaring.

In my experience, most scientists seem to have heard of Popper and Kuhn. If that. Physical scientists will almost always pay lip service to Popper’s ideal of falsifiablity, and that’s pretty much the extent of it. Living up to applying that ideal is another matter. If an idea that is near and dear to their hearts and careers is under threat, the knee-jerk response is more commonly “let’s not get carried away!”

There is more to the philosophy of science than that. The philosophers of science have invested lots of effort in considering both how science works in practice (e.g., Kuhn) and how it should work (Popper, Lakatos, …) The practice and the ideal of science are not always the same thing.

The debate about dark matter and MOND hinges on the philosophy of science in a profound way. I do not think it is possible to make real progress out of our current intellectual morass without a deep examination of what science is and what it should be.

Merritt takes us through the methodology of scientific research programs, spelling out what we’ve learned from past experience (the history of science) and from careful consideration of how science should work (its philosophical basis). For example, all scientists agree that it is important for a scientific theory to have predictive power. But we are disturbingly fuzzy on what that means. I frequently hear my colleagues say things like “my theory predicts that” in reference to some observation, when in fact no such prediction was made in advance. What they usually mean is that it fits well with the theory. This is sometimes true – they could have predicted the observation in advance if they had considered that particular case. But sometimes it is retroactive fitting more than prediction – consistency, perhaps, but it could have gone a number of other ways equally well. Worse, it is sometimes a post facto assertion that is simply false: not only was the prediction not made in advance, but the observation was genuinely surprising at the time it was made. Only in retrospect is it “correctly” “predicted.”

The philosophers have considered these situations. One thing I appreciate is Merritt’s review of the various takes philosophers have on what counts as a prediction. I wish I had known these things when I wrote the recent review in which I took a very restrictive definition to avoid the foible above. The philosophers provide better definitions, of which more than one can be usefully applicable. I’m not going to go through them here: you should read Merritt’s book, and those of the philosophers he cites.

From this philosophical basis, Merritt makes a systematic, dare I say, scientific, analysis of the basic tenets of MOND and MONDian theories, and how they fare with regard to their predictions and observational tests. Along the way, he also considers the same material in the light of the dark matter paradigm. Of comparable import to confirmed predictions are surprising observations: if a new theory predicts that the sun will rise in the morning, that isn’t either new or surprising. If instead a theory expects one thing but another is observed, that is surprising, and it counts against that theory even if it can be adjusted to accommodate the new fact. I have seen this happen over and over with dark matter: surprising observations (e.g., the absence of cusps in dark matter halos, the small numbers of dwarf galaxies, downsizing in which big galaxies appear to form earliest) are at first ignored, doubted, debated, then partially explained with some mental gymnastics until it is Known and of course, we knew it all along. Merritt explicitly points out examples of this creeping determinism, in which scientists come to believe they predicted something they merely rationalized post-facto (hence the preeminence of genuinely a priori predictions that can’t be fudged).

Merritt’s book is also replete with examples of scientists failing to take alternatives seriously. This is natural: we have invested an enormous amount of time developing physical science to the point we have now reached; there is an enormous amount of background material that cannot simply be ignored or discarded. All too often, we are confronted with crackpot ideas that do exactly this. This makes us reluctant to consider ideas that sound crazy on first blush, and most of us will rightly display considerable irritation when asked to do so. For reasons both valid and not, MOND skirts this bondary. I certainly didn’t take it seriously myself, nor really considered it at all, until its predictions came true in my own data. It was so far below my radar that at first I did not even recognize that this is what had happened. But I did know I was surprised; what I was seeing did not make sense in terms of dark matter. So, from this perspective, I can see why other scientists are quick to dismiss it. I did so myself, initially. I was wrong to do so, and so are they.

A common failure mode is to ignore MOND entirely: despite dozens of confirmed predictions, it simply remains off the radar for many scientists. They seem never to have given it a chance, so they simply don’t pay attention when it gets something right. This is pure ignorance, which is not a strong foundation from which to render a scientific judgement.

Another common reaction is to acknowledge then dismiss. Merritt provides many examples where eminent scientists do exactly this with a construction like: “MOND correctly predicted X but…” where X is a single item, as if this is the only thing that [they are aware that] it does. Put this way, it is easy to dismiss – a common refrain I hear is “MOND fits rotation curves but nothing else.” This is a long-debunked falsehood that is asserted and repeated until it achieves the status of common knowledge within the echo chamber of scientists who refuse to think outside the dark matter box.

This is where the philosophy of science is crucial to finding our way forward. Merritt’s book illuminates how this is done. If you are reading these words, you owe it to yourself to read his book.

Hypothesis testing with gas rich galaxies

Hypothesis testing with gas rich galaxies

This Thanksgiving, I’d highlight something positive. Recently, Bob Sanders wrote a paper pointing out that gas rich galaxies are strong tests of MOND. The usual fit parameter, the stellar mass-to-light ratio, is effectively negligible when gas dominates. The MOND prediction follows straight from the gas distribution, for which there is no equivalent freedom. We understand the 21 cm spin-flip transition well enough to relate observed flux directly to gas mass.

In any human endeavor, there are inevitably unsung heroes who carry enormous amounts of water but seem to get no credit for it. Sanders is one of those heroes when it comes to the missing mass problem. He was there at the beginning, and has a valuable perspective on how we got to where we are. I highly recommend his books, The Dark Matter Problem: A Historical Perspective and Deconstructing Cosmology.

In bright spiral galaxies, stars are usually 80% or so of the mass, gas only 20% or less. But in many dwarf galaxies,  the mass ratio is reversed. These are often low surface brightness and challenging to observe. But it is a worthwhile endeavor, as their rotation curve is predicted by MOND with extraordinarily little freedom.

Though gas rich galaxies do indeed provide an excellent test of MOND, nothing in astronomy is perfectly clean. The stellar mass-to-light ratio is an irreducible need-to-know parameter. We also need to know the distance to each galaxy, as we do not measure the gas mass directly, but rather the flux of the 21 cm line. The gas mass scales with flux and the square of the distance (see equation 7E7), so to get the gas mass right, we must first get the distance right. We also need to know the inclination of a galaxy as projected on the sky in order to get the rotation to which we’re fitting right, as the observed line of sight Doppler velocity is only sin(i) of the full, in-plane rotation speed. The 1/sin(i) correction becomes increasingly sensitive to errors as i approaches zero (face-on galaxies).

The mass-to-light ratio is a physical fit parameter that tells us something meaningful about the amount of stellar mass that produces the observed light. In contrast, for our purposes here, distance and inclination are “nuisance” parameters. These nuisance parameters can be, and generally are, measured independently from mass modeling. However, these measurements have their own uncertainties, so one has to be careful about taking these measured values as-is. One of the powerful aspects of Bayesian analysis is the ability to account for these uncertainties to allow for the distance to be a bit off the measured value, so long as it is not too far off, as quantified by the measurement uncertainties. This is what current graduate student Pengfei Li did in Li et al. (2018). The constraints on MOND are so strong in gas rich galaxies that often the nuisance parameters cannot be ignored, even when they’re well measured.

To illustrate what I’m talking about, let’s look at one famous example, DDO 154. This galaxy is over 90% gas. The stars (pictured above) just don’t matter much. If the distance and inclination are known, the MOND prediction for the rotation curve follows directly. Here is an example of a MOND fit from a recent paper:

DDO154_MOND_180805695
The MOND fit to DDO 154 from Ren et al. (2018). The black points are the rotation curve data, the green line is the Newtonian expectation for the baryons, and the red line is their MOND fit.

This is terrible! The MOND fit – essentially a parameter-free prediction – misses all of the data. MOND is falsified. If one is inclined to hate MOND, as many seem to be, then one stops here. No need to think further.

If one is familiar with the ups and downs in the history of astronomy, one might not be so quick to dismiss it. Indeed, one might notice that the shape of the MOND prediction closely tracks the shape of the data. There’s just a little difference in scale. That’s kind of amazing for a theory that is wrong, especially when it is amplifying the green line to predict the red one: it needn’t have come anywhere close.

Here is the fit to the same galaxy using the same data [already] published in Li et al.:

DDO154_RAR_Li2018
The MOND fit to DDO 154 from Li et al. (2018) using the same data as above, as tabulated in SPARC.

Now we have a good fit, using the same data! How can this be so?

I have not checked what Ren et al. did to obtain their MOND fits, but having done this exercise myself many times, I recognize the slight offset they find as a typical consequence of holding the nuisance parameters fixed. What if the measured distance is a little off?

Distance estimates to DDO 154 in the literature range from 3.02 Mpc to 6.17 Mpc. The formally most accurate distance measurement is 4.04 ± 0.08 Mpc. In the fit shown here, we obtained 3.87 ± 0.16 Mpc. The error bars on these distances overlap, so they are the same number, to measurement accuracy. These data do not falsify MOND. They demonstrate that it is sensitive enough to tell the difference between 3.8 and 4.1 Mpc.

One will never notice this from a dark matter fit. Ren et al. also make fits with self-interacting dark matter (SIDM). The nifty thing about SIDM is that it makes quasi-constant density cores in dark matter halos. Halos of this form are not predicted by “ordinary” cold dark matter (CDM), but often give better fits than either MOND of the NFW halos of dark matter-only CDM simulations. For this galaxy, Ren et al. obtain the following SIDM fit.

DDO154_SIDM_180805695
The SIDM fit to DDO 154 from Ren et al.

This is a great fit. Goes right through the data. That makes it better, right?

Not necessarily. In addition to the mass-to-light ratio (and the nuisance parameters of distance and inclination), dark matter halo fits have [at least] two additional free parameters to describe the dark matter halo, such as its mass and core radius. These parameters are highly degenerate – one can obtain equally good fits for a range of mass-to-light ratios and core radii: one makes up for what the other misses. Parameter degeneracy of this sort is usually a sign that there is too much freedom in the model. In this case, the data are adequately described by one parameter (the MOND fit M*/L, not counting the nuisances in common), so using three (M*/L, Mhalo, Rcore) is just an exercise in fitting a French curve. There is ample freedom to fit the data. As a consequence, you’ll never notice that one of the nuisance parameters might be a tiny bit off.

In other words, you can fool a dark matter fit, but not MOND. Erwin de Blok and I demonstrated this 20 years ago. A common myth at that time was that “MOND is guaranteed to fit rotation curves.” This seemed patently absurd to me, given how it works: once you stipulate the distribution of baryons, the rotation curve follows from a simple formula. If the two don’t match, they don’t match. There is no guarantee that it’ll work. Instead, it can’t be forced.

As an illustration, Erwin and I tried to trick it. We took two galaxies that are identical in the Tully-Fisher plane (NGC 2403 and UGC 128) and swapped their mass distribution and rotation curve. These galaxies have the same total mass and the same flat velocity in the outer part of the rotation curve, but the detailed distribution of their baryons differs. If MOND can be fooled, this closely matched pair ought to do the trick. It does not.

NGC2403UGC128trickMOND
An attempt to fit MOND to a hybrid galaxy with the rotation curve of NGC 2403 and the baryon distribution of UGC 128. The mass-to-light ratio is driven to unphysical values (6 in solar units), but an acceptable fit is not obtained.

Our failure to trick MOND should not surprise anyone who bothers to look at the math involved. There is a one-to-one relation between the distribution of the baryons and the resulting rotation curve. If there is a mismatch between them, a fit cannot be obtained.

We also attempted to play this same trick on dark matter. The standard dark matter halo fitting function at the time was the pseudo-isothermal halo, which has a constant density core. It is very similar to the halos of SIDM and to the cored dark matter halos produced by baryonic feedback in some simulations. Indeed, that is the point of those efforts: they  are trying to capture the success of cored dark matter halos in fitting rotation curve data.

NGC2403UGC128trickDM
A fit to the hybrid galaxy with a cored (pseudo-isothermal) dark matter halo. A satisfactory fit is readily obtained.

Dark matter halos with a quasi-constant density core do indeed provide good fits to rotation curves. Too good. They are easily fooled, because they have too many degrees of freedom. They will fit pretty much any plausible data that you throw at them. This is why the SIDM fit to DDO 154 failed to flag distance as a potential nuisance. It can’t. You could double (or halve) the distance and still find a good fit.

This is why parameter degeneracy is bad. You get lost in parameter space. Once lost there, it becomes impossible to distinguish between successful, physically meaningful fits and fitting epicycles.

Astronomical data are always subject to improvement. For example, the THINGS project obtained excellent data for a sample of nearby galaxies. I made MOND fits to all the THINGS (and other) data for the MOND review Famaey & McGaugh (2012). Here’s the residual diagram, which has been on my web page for many years:

rcresid_mondfits
Residuals of MOND fits from Famaey & McGaugh (2012).

These are, by and large, good fits. The residuals have a well defined peak centered on zero.  DDO 154 was one of the THINGS galaxies; lets see what happens if we use those data.

DDO154mond_i66
The rotation curve of DDO 154 from THINGS (points with error bars). The Newtonian expectation for stars is the green line; the gas is the blue line. The red line is the MOND prediction. Not that the gas greatly outweighs the stars beyond 1.5 kpc; the stellar mass-to-light ratio has extremely little leverage in this MOND fit.

The first thing one is likely to notice is that the THINGS data are much better resolved than the previous generation used above. The first thing I noticed was that THINGS had assumed a distance of 4.3 Mpc. This was prior to the measurement of 4.04, so lets just start over from there. That gives the MOND prediction shown above.

And it is a prediction. I haven’t adjusted any parameters yet. The mass-to-light ratio is set to the mean I expect for a star forming stellar population, 0.5 in solar units in the Sptizer 3.6 micron band. D=4.04 Mpc and i=66 as tabulated by THINGS. The result is pretty good considering that no parameters have been harmed in the making of this plot. Nevertheless, MOND overshoots a bit at large radii.

Constraining the inclinations for gas rich dwarf galaxies like DDO 154 is a bit of a nightmare. Literature values range from 20 to 70 degrees. Seriously. THINGS itself allows the inclination to vary with radius; 66 is just a typical value. Looking at the fit Pengfei obtained, i=61. Let’s try that.

DDO154mond_i61
MOND fit to the THINGS data for DDO 154 with the inclination adjusted to the value found by Li et al. (2018).

The fit is now satisfactory. One tweak to the inclination, and we’re done. This tweak isn’t even a fit to these data; it was adopted from Pengfei’s fit to the above data. This tweak to the inclination is comfortably within any plausible assessment of the uncertainty in this quantity. The change in sin(i) corresponds to a mere 4% in velocity. I could probably do a tiny bit better with further adjustment – I have left both the distance and the mass-to-light ratio fixed – but that would be a meaningless exercise in statistical masturbation. The result just falls out: no muss, no fuss.

Hence the point Bob Sanders makes. Given the distribution of gas, the rotation curve follows. And it works, over and over and over, within the bounds of the uncertainties on the nuisance parameters.

One cannot do the same exercise with dark matter. It has ample ability to fit rotation curve data, once those are provided, but zero power to predict it. If all had been well with ΛCDM, the rotation curves of these galaxies would look like NFW halos. Or any number of other permutations that have been discussed over the years. In contrast, MOND makes one unique prediction (that was not at all anticipated in dark matter), and that’s what the data do. Out of the huge parameter space of plausible outcomes from the messy hierarchical formation of galaxies in ΛCDM, Nature picks the one that looks exactly like MOND.

star_trek_tv_spock_3_copy_-_h_2018
This outcome is illogical.

It is a bad sign for a theory when it can only survive by mimicking its alternative. This is the case here: ΛCDM must imitate MOND. There are now many papers asserting that it can do just this, but none of those were written before the data were provided. Indeed, I consider it to be problematic that clever people can come with ways to imitate MOND with dark matter. What couldn’t it imitate? If the data had all looked like technicolor space donkeys, we could probably find a way to make that so as well.

Cosmologists will rush to say “microwave background!” I have some sympathy for that, because I do not know how to explain the microwave background in a MOND-like theory. At least I don’t pretend to, even if I had more predictive success there than their entire community. But that would be a much longer post.

For now, note that the situation is even worse for dark matter than I have so far made it sound. In many dwarf galaxies, the rotation velocity exceeds that attributable to the baryons (with Newton alone) at practically all radii. By a lot. DDO 154 is a very dark matter dominated galaxy. The baryons should have squat to say about the dynamics. And yet, all you need to know to predict the dynamics is the baryon distribution. The baryonic tail wags the dark matter dog.

But wait, it gets better! If you look closely at the data, you will note a kink at about 1 kpc, another at 2, and yet another around 5 kpc. These kinks are apparent in both the rotation curve and the gas distribution. This is an example of Sancisi’s Law: “For any feature in the luminosity profile there is a corresponding feature in the rotation curve and vice versa.” This is a general rule, as Sancisi observed, but it makes no sense when the dark matter dominates. The features in the baryon distribution should not be reflected in the rotation curve.

The observed baryons orbit in a disk with nearly circular orbits confined to the same plane. The dark matter moves on eccentric orbits oriented every which way to provide pressure support to a quasi-spherical halo. The baryonic and dark matter occupy very different regions of phase space, the six dimensional volume of position and momentum. The two are not strongly coupled, communicating only by the weak force of gravity in the standard CDM paradigm.

One of the first lessons of galaxy dynamics is that galaxy disks are subject to a variety of instabilities that grow bars and spiral arms. These are driven by disk self-gravity. The same features do not appear in elliptical galaxies because they are pressure supported, 3D blobs. They don’t have disks so they don’t have disk self-gravity, much less the features that lead to the bumps and wiggles observed in rotation curves.

Elliptical galaxies are a good visual analog for what dark matter halos are believed to be like. The orbits of dark matter particles are unable to sustain features like those seen in  baryonic disks. They are featureless for the same reasons as elliptical galaxies. They don’t have disks. A rotation curve dominated by a spherical dark matter halo should bear no trace of the features that are seen in the disk. And yet they’re there, often enough for Sancisi to have remarked on it as a general rule.

It gets worse still. One of the original motivations for invoking dark matter was to stabilize galactic disks: a purely Newtonian disk of stars is not a stable configuration, yet the universe is chock full of long-lived spiral galaxies. The cure was to place them in dark matter halos.

The problem for dwarfs is that they have too much dark matter. The halo stabilizes disks by  suppressing the formation of structures that stem from disk self-gravity. But you need some disk self-gravity to have the observed features. That can be tuned to work in bright spirals, but it fails in dwarfs because the halo is too massive. As a practical matter, there is no disk self-gravity in dwarfs – it is all halo, all the time. And yet, we do see such features. Not as strong as in big, bright spirals, but definitely present. Whenever someone tries to analyze this aspect of the problem, they inevitably come up with a requirement for more disk self-gravity in the form of unphysically high stellar mass-to-light ratios (something I predicted would happen). In contrast, this is entirely natural in MOND (see, e.g., Brada & Milgrom 1999 and Tiret & Combes 2008), where it is all disk self-gravity since there is no dark matter halo.

The net upshot of all this is that it doesn’t suffice to mimic the radial acceleration relation as many simulations now claim to do. That was not a natural part of CDM to begin with, but perhaps it can be done with smooth model galaxies. In most cases, such models lack the resolution to see the features seen in DDO 154 (and in NGC 1560 and in IC 2574, etc.) If they attain such resolution, they better not show such features, as that would violate some basic considerations. But then they wouldn’t be able to describe this aspect of the data.

Simulators by and large seem to remain sanguine that this will all work out. Perhaps I have become too cynical, but I recall hearing that 20 years ago. And 15. And ten… basically, they’ve always assured me that it will work out even though it never has. Maybe tomorrow will be different. Or would that be the definition of insanity?

 

 

It Must Be So. But which Must?

It Must Be So. But which Must?

In the last post, I noted some of the sociological overtones underpinning attitudes about dark matter and modified gravity theories. I didn’t get as far as the more scientifically  interesting part, which  illustrates a common form of reasoning in physics.

About modified gravity theories, Bertone & Tait state

“the only way these theories can be reconciled with observations is by effectively, and very precisely, mimicking the behavior of cold dark matter on cosmological scales.”

Leaving aside just which observations need to be mimicked so precisely (I expect they mean power spectrum; perhaps they consider this to be so obvious that it need not be stated), this kind of reasoning is both common and powerful – and frequently correct. Indeed, this is exactly the attitude I expressed in my review a few years ago for the Canadian Journal of Physics, quoted in the image above. I get it. There are lots of positive things to be said for the standard cosmology.

This upshot of this reasoning is, in effect, that “cosmology works so well that non-baryonic dark matter must exist.” I have sympathy for this attitude, but I also remember many examples in the history of cosmology where it has gone badly wrong. There was a time, not so long ago, that the matter density had to be the critical value, and the Hubble constant had to be 50 km/s/Mpc. By and large, it is the same community that insisted on those falsehoods with great intensity that continues to insist on conventionally conceived cold dark matter with similarly fundamentalist insistence.

I think it is an overstatement to say that the successes of cosmology (as we presently perceive them) prove the existence of dark matter. A more conservative statement is that the ΛCDM cosmology is correct if, and only if, dark matter exists. But does it? That’s a separate question, which is why laboratory searches are so important – including null results. It was, after all, the null result of Michelson & Morley that ultimately put an end to the previous version of an invisible aetherial medium, and sparked a revolution in physics.

Here I point out that the same reasoning asserted by Bertone & Tait as a slam dunk in favor of dark matter can just as accurately be asserted in favor of MOND. To directly paraphrase the above statement:

“the only way ΛCDM can be reconciled with observations is by effectively, and very precisely, mimicking the behavior of MOND on galactic scales.”

This is a terrible problem for dark matter. Even if it were true, as is often asserted, that MOND only fits rotation curves, this would still be tantamount to a falsification of dark matter by the same reasoning applied by Bertone & Tait.

Lets look at just one example, NGC 1560:

 

ngc1560mond
The rotation curve of NGC 1560 (points) together with the Newtonian expectation (black line) and the MOND fit (blue line). Data from Begeman et al. (1991) and Gentile et al. (2010).

MOND fits the details of this rotation curve in excruciating detail. It provides just the right amount of boost over the Newtonian expectation, which varies from galaxy to galaxy. Features in the baryon distribution are reflected in the rotation curve. That is required in MOND, but makes no sense in dark matter, where the excess velocity over the Newtonian expectation is attributed to a dynamically hot, dominant, quasi-spherical dark matter halo. Such entities cannot support the features commonly seen in thin, dynamically cold disks. Even if they could, there is no reason that features in the dominant dark matter halo should align with those in the disk: a sphere isn’t a disk. In short, it is impossible to explain this with dark matter – to the extent that anything is ever impossible for the invisible.

NGC 1560 is a famous case because it has such an obvious feature. It is common to dismiss this as some non-equilibrium fluke that should simply be ignored. That is always a dodgy path to tread, but might be OK if it were only this galaxy. But similar effects are seen over and over again, to the point that they earned an empirical moniker: Renzo’s Rule. Renzo’s rule is known to every serious student of rotation curves, but has not informed the development of most dark matter theory. Ignoring this information is like leaving money on the table.

MOND fits not just NGC 1560, but very nearly* every galaxy we measure. It does so with excruciatingly little freedom. The only physical fit parameter is the stellar mass-to-light ratio. The gas fraction of NGC 1560 is 75%, so M*/L plays little role. We understand enough about stellar populations to have an idea what to expect; MOND fits return mass-to-light ratios that compare well with the normalization, color dependence, and band-pass dependent scatter expected from stellar population synthesis models.

MLBV_MOND
The mass-to-light ratio from MOND fits (points) in the blue (left panel) and near-infrared (right panel) pass-bands plotted against galaxy color (blue to the left, red to the right). From the perspective of stellar populations, one expects more scatter and a steeper color dependence in the blue band, as observed. The lines are stellar population models from Bell et al. (2003). These are completely independent, and have not been fit to the data in any way. One could hardly hope for better astrophysical agreement.

 

One can also fit rotation curve data with dark matter halos. These require a minimum of three parameters to the one of MOND. In addition to M*/L, one also needs at least two parameters to describe the dark matter halo of each galaxy – typically some characteristic mass and radius. In practice, one finds that such fits are horribly degenerate: one can not cleanly constrain all three parameters, much less recover a sensible distribution of M*/L. One cannot construct the plot above simply by asking the data what it wants as one can with MOND.

The “disk-halo degeneracy” in dark matter halo fits to rotation curves has been much discussed in the literature. Obsessed over, dismissed, revived, and ultimately ignored without satisfactory understanding. Well, duh. This approach uses three parameters per galaxy when it takes only one to describe the data. Degeneracy between the excess fit parameters is inevitable.

From a probabilistic perspective, there is a huge volume of viable parameter space that could (and should) be occupied by galaxies composed of dark matter halos plus luminous galaxies. Two identical dark matter halos might host very different luminous galaxies, so would have rotation curves that differed with the baryonic component. Two similar looking galaxies might reside in rather different dark matter halos, again having rotation curves that differ.

The probabilistic volume in MOND is much smaller. Absolutely tiny by comparison. There is exactly one and only one thing each rotation curve can do: what the particular distribution of baryons in each galaxy says it should do. This is what we observe in Nature.

The only way ΛCDM can be reconciled with observations is by effectively, and very precisely, mimicking the behavior of MOND on galactic scales. There is a vast volume of parameter space that the rotation curves of galaxies could, in principle, inhabit. The naive expectation was exponential disks in NFW halos. Real galaxies don’t look like that. They look like MOND. Magically, out of the vast parameter space available to galaxies in the dark matter picture, they only ever pick the tiny sub-volume that very precisely mimics MOND.

The ratio of probabilities is huge. So many dark matter models are possible (and have been mooted over the years) that it is indefinably huge. The odds of observing MOND-like phenomenology in a ΛCDM universe is practically zero. This amounts to a practical falsification of dark matter.

I’ve never said dark matter is falsified, because I don’t think it is a falsifiable concept. It is like epicycles – you can always fudge it in some way. But at a practical level, it was falsified a long time ago.

That is not to say MOND has to be right. That would be falling into the same logical trap that says ΛCDM has to be right. Obviously, both have virtues that must be incorporated into whatever the final answer may be. There are some efforts in this direction, but by and large this is not how science is being conducted at present. The standard script is to privilege those data that conform most closely to our confirmation bias, and pour scorn on any contradictory narrative.

In my assessment, the probability of ultimate success through ignoring inconvenient data is practically zero. Unfortunately, that is the course upon which much of the field is currently set.


*There are of course exceptions: no data are perfect, so even the right theory will get it wrong once in a while. The goof rate for MOND fits is about what I expect: rare, but  more frequent for lower quality data. Misfits are sufficiently rare that to obsess over them is to refuse to see the forest for a few outlying trees.

Here’s a residual plot of MOND fits. See the peak at right? That’s the forest. See the tiny tail to one side? That’s an outlying tree.

rcresid_mondfits
Residuals of MOND rotation curve fits from Famaey & McGaugh (2012).

Dwarf Satellite Galaxies. III. The dwarfs of Andromeda

Dwarf Satellite Galaxies. III. The dwarfs of Andromeda

Like the Milky Way, our nearest giant neighbor, Andromeda (aka M31), has several dozen dwarf satellite galaxies. A few of these were known and had measured velocity dispersions at the time of my work with Joe Wolf, as discussed previously. Also like the Milky Way, the number of known objects has grown rapidly in recent years – thanks in this case largely to the PAndAS survey.

PAndAS imaged the area around M31 and M33, finding many individual red giant stars. These trace out the debris from interactions and mergers as small dwarfs are disrupted and consumed by their giant host. They also pointed up the existence of previously unknown dwarf satellites.

M31fromPANDAS_ McC2012_EPJ_19_01003
The PAndAS survey field. Dwarf satellites are circled.

As the PAndAS survey started reporting the discovery of new dwarf satellites around Andromeda, it occurred to me that this provided the opportunity to make genuine a priori predictions. These are the gold standard of the scientific method. We could use the observed luminosity and size of the newly discovered dwarfs to predict their velocity dispersions.

I tried to do this for both ΛCDM and MOND. I will not discuss the ΛCDM case much, because it can’t really be done. But it is worth understanding why this is.

In ΛCDM, the velocity dispersion is determined by the dark matter halo. This has only a tenuous connection to the observed stars, so just knowing how big and bright a dwarf is doesn’t provide much predictive power about the halo. This can be seen from this figure by Tollerud et al (2011):

Tollerud2011_ml_scatter
Virial mass of the dark matter halo as a function of galaxy luminosity. Dwarfs satellites reside in the wide colored band of low luminosities.

This graph is obtained by relating the number density of galaxies (an observed quantity) to that of the dark matter halos in which they reside (a theoretical construct). It is highly non-linear, deviating strongly from the one-to-one line we expected early on. There is no reason to expect this particular relation; it is imposed on us by the fact that the observed luminosity function of galaxies is rather flat while the predicted halo mass function is steep. Nowadays, this is usually called the missing satellite problem, but this is a misnomer as it pervades the field.

Addressing the missing satellites problem would be another long post, so lets just accept that the relation between mass and light has to follow something like that illustrated above. If a dwarf galaxy has a luminosity of a million suns, one can read off the graph that it should live in a dark halo with a mass of about 1010 M. One could use this to predict the velocity dispersion, but not very precisely, because there’s a big range corresponding to that luminosity (the bands in the figure). It could be as much as 1011 M or as little as 109 M. This corresponds to a wide range of velocity dispersions. This wide range is unavoidable because of the difference in the luminosity function and halo mass function. Small variations in one lead to big variations in the other, and some scatter in dark halo properties is unavoidable.

Consequently, we only have a vague range of expected velocity dispersions in ΛCDM. In practice, we never make this prediction. Instead, we compare the observed velocity dispersion to the luminosity and say “gee, this galaxy has a lot of dark matter” or “hey, this one doesn’t have much dark matter.” There’s no rigorously testable prior.

In MOND, what you see is what you get. The velocity dispersion has to follow from the observed stellar mass. This is straightforward for isolated galaxies: M* ∝ σ4 – this is essentially the equivalent of the Tully-Fisher relation for pressure supported systems. If we can estimate the stellar mass from the observed luminosity, the predicted velocity dispersion follows.

Many dwarf satellites are not isolated in the MONDian sense: they are subject to the external field effect (EFE) from their giant hosts. The over-under for whether the EFE applies is the point when the internal acceleration from all the stars of the dwarf on each other is equal to the external acceleration from orbiting the giant host. The amplitude of the discrepancy in MOND depends on how low the total acceleration is relative to the critical scale a0. The external field in effect adds some acceleration that wouldn’t otherwise be there, making the discrepancy less than it would be for an isolated object. This means that two otherwise identical dwarfs may be predicted to have different velocity dispersions is they are or are not subject to the EFE. This is a unique prediction of MOND that has no analog in ΛCDM.

It is straightforward to derive the equation to predict velocity dispersions in the extreme limits of isolated (aex ≪ ain < a0) or EFE dominated (ain ≪ aex < a0) objects. In reality, there are many objects for which ain ≈ aex, and no simple formula applies. In practice, we apply the formula that more nearly applies, and pray that this approximation is good enough.

There are many other assumptions and approximations that must be made in any theory: that an object is spherical, isotropic, and in dynamical equilibrium. All of these must fail at some level, but it is the last one that is the most serious concern. In the case of the EFE, one must also make the approximation that the object is in equilibrium at the current level of the external field. That is never true, as both the amplitude and the vector of the external field vary as a dwarf orbits its host. But it might be an adequate approximation if this variation is slow. In the case of a circular orbit, only the vector varies. In general the orbits are not known, so we make the instantaneous approximation and once again pray that it is good enough. There is a fairly narrow window between where the EFE becomes important and where we slip into the regime of tidal disruption, but lets plow ahead and see how far we can get, bearing in mind that the EFE is a dynamical variable of which we only have a snapshot.

To predict the velocity dispersion in the isolated case, all we need to know is the luminosity and a stellar mass-to-light ratio. Assuming the dwarfs of Andromeda to be old stellar populations, I adopted a V-band mass-to-light ratio of 2 give or take a factor of 2. That usually dominates the uncertainty, though the error in the distance can sometimes impact the luminosity at a level that impacts the prediction.

To predict the velocity dispersion in the EFE case, we again need the stellar mass, but now also need to know the size of the stellar system and the intensity of the external field to which it is subject. The latter depends on the mass of the host galaxy and the distance from it to the dwarf. This latter quantity is somewhat fraught: it is straightforward to measure the projected distance on the sky, but we need the 3D distance – how far in front or behind each dwarf is as well as its projected distance from the host. This is often a considerable contributor to the error budget. Indeed, some dwarfs may be inferred to be in the EFE regime for the low end of the range of adopted stellar mass-to-light ratio, and the isolated regime for the high end.

In this fashion, we predicted velocity dispersions for the dwarfs of Andromeda. We in this case were Milgrom and myself. I had never collaborated with him before, and prefer to remain independent. But I also wanted to be sure I got the details described above right. Though it wasn’t much work to make the predictions once the preliminaries were established, it was time consuming to collect and vet the data. As we were writing the paper, velocity dispersion measurements started to appear. People like Michelle Collins, Erik Tollerud, and Nicolas Martin were making follow-up observations, and publishing velocity dispersion for the objects we were making predictions for. That was great, but they were too good – they were observing and publishing faster than we could write!

Nevertheless, we managed to make and publish a priori predictions for 10 dwarfs before any observational measurements were published. We also made blind predictions for the other known dwarfs of Andromeda, and checked the predicted velocity dispersions against all measurements that we could find in the literature. Many of these predictions were quickly tested by on-going programs (i.e., people were out to measure velocity dispersions, whether we predicted them or not). Enough data rolled in that we were soon able to write a follow-up paper testing our predictions.

Nailed it. Good data were soon available to test the predictions for 8 of the 10* a priori cases. All 8 were consistent with our predictions. I was particularly struck by the case of And XXVIII, which I had called out as perhaps the best test. It was isolated, so the messiness of the EFE didn’t apply, and the uncertainties were low. Moreover, the predicted velocity dispersion was low – a good deal lower than broadly expected in ΛCDM: 4.3 km/s, with an uncertainty just under 1 km/s. Two independent observations were subsequently reported. One found 4.9 ± 1.6 km/s, the other 6.6 ± 2.1 km/s, both in good agreement within the uncertainties.

We made further predictions in the second paper as people had continued to discover new dwarfs. These also came true. Here is a summary plot for all of the dwarfs of Andromeda:

AndDwarfswithGoldStars.002
The velocity dispersions of the dwarf satellites of Andromeda. Each numbered box corresponds to one dwarf (x=1 is for And I and so on). Measured velocity dispersions have a number next to them that is the number of stars on which the measurement is based. MOND predictions are circles: green if isolated, open if the EFE applies. Points appear within each box in the order they appeared in the literature, from left to right. The vast majority of Andromeda’s dwarfs are consistent with MOND (large green circles). Two cases are ambiguous (large yellow circles), having velocity dispersions based only a few stars. Only And V appears to be problematic (large red circle).

MOND works well for And I, And II, And III, And VI, And VII, And IX, And X, And XI, And XII, And XIII, And XIV, And XV, And XVI, And XVII, And XVIII, And XIX, And XX, And XXI, And XXII, And XXIII, And XXIV, And XXV, And XXVIII, And XXIX, And XXXI, And XXXII, and And XXXIII. There is one problematic case: And V. I don’t know what is going on there, but note that systematic errors frequently happen in astronomy. It’d be strange if there weren’t at least one goofy case.

Nevertheless, the failure of And V could be construed as a falsification of MOND. It ought to work in every single case. But recall the discussion of assumptions and uncertainties above. Is falsification really the story these data tell?

We do have experience with various systematic errors. For example, we predicted that the isolated dwarfs spheroidal Cetus should have a velocity dispersion in MOND of 8.2 km/s. There was already a published measurement of 17 ± 2 km/s, so we reported that MOND was wrong in this case by over 3σ. Or at least we started to do so. Right before we submitted that paper, a new measurement appeared: 8.3 ± 1 km/s. This is an example of how the data can sometimes change by rather more than the formal error bars suggest is possible. In this case, I suspect the original observations lacked the spectral resolution to resolve the velocity dispersion. At any rate, the new measurement (8.3 km/s) was somewhat more consistent with our prediction (8.2 km/s).

The same predictions cannot even be made in ΛCDM. The velocity data can always be fit once they are in hand. But there is no agreed method to predict the velocity dispersion of a dwarf from its observed luminosity. As discussed above, this should not even be possible: there is too much scatter in the halo mass-stellar mass relation at these low masses.

An unsung predictive success of MOND absent from the graph above is And IV. When And IV was discovered in the general direction of Andromeda, it was assumed to be a new dwarf satellite – hence the name. Milgrom looked at the velocities reported for this object, and said it had to be a background galaxy. No way it could be a dwarf satellite – at least not in MOND. I see no reason why it couldn’t have been in ΛCDM. It is absent from the graph above, because it was subsequently confirmed to be much farther away (7.2 Mpc vs. 750 kpc for Andromeda).

The box for And XVII is empty because this system is manifestly out of equilibrium. It is more of a stellar stream than a dwarf, appearing as a smear in the PAndAS image rather than as a self-contained dwarf. I do not recall what the story with the other missing object (And VIII) is.

While writing the follow-up paper, I also noticed that there were a number of Andromeda dwarfs that were photometrically indistinguishable: basically the same in terms of size and stellar mass. But some were isolated while others were subject to the EFE. MOND predicts that the EFE cases should have lower velocity dispersion than the isolated equivalents.

AndDwarfswithGoldStars.003
The velocity dispersions of the dwarfs of Andromeda, highlighting photometrically matched pairs – dwarfs that should be indistinguishable, but aren’t because of the EFE.

And XXVIII (isolated) has a higher velocity dispersion than its near-twin And XVII (EFE). The same effect might be acting in And XVIII (isolated) and And XXV (EFE). This is clear if we accept the higher velocity dispersion measurement for And XVIII, but an independent measurements begs to differ. The former has more stars, so is probably more reliable, but we should be cautious. The effect is not clear in And XVI (isolated) and And XXI (EFE), but the difference in the prediction is small and the uncertainties are large.

An aggressive person might argue that the pairs of dwarfs is a positive detection of the EFE. I don’t think the data for the matched pairs warrant that, at least not yet. On the other hand, the appropriate use of the EFE was essential to all the predictions, not just the matched pairs.

The positive detection of the EFE is important, as it is a unique prediction of MOND. I see no way to tune ΛCDM galaxy simulations to mimic this effect. Of course, there was a  very recent time when it seemed impossible for them to mimic the isolated predictions of MOND. They claim to have come a long way in that regard.

But that’s what we’re stuck with: tuning ΛCDM to make it look like MOND. This is why a priori predictions are important. There is ample flexibility to explain just about anything with dark matter. What we can’t seem to do is predict the same things that MOND successfully predicts… predictions that are both quantitative and very specific. We’re not arguing that dwarfs in general live in ~15 or 30 km/s halos, as we must in ΛCDM. In MOND we can say this dwarf will have this velocity dispersion and that dwarf will have that velocity dispersion. We can distinguish between 4.9 and 7.3 km/s. And we can do it over and over and over. I see no way to do the equivalent in ΛCDM, just as I see no way to explain the acoustic power spectrum of the CMB in MOND.

This is not to say there are no problematic cases for MOND. Read, Walker, & Steger have recently highlighted the matched pair of Draco and Carina as an issue. And they are – though here I already have reason to suspect Draco is out of equilibrium, which makes it challenging to analyze. Whether it is actually out of equilibrium or not is a separate question.

I am not thrilled that we are obliged to invoke non-equilibrium effects in both theories. But there is a difference. Brada & Milgrom provided a quantitative criterion to indicate when this was an issue before I ran into the problem. In ΛCDM, the low velocity dispersions of objects like And XIX, XXI, XXV and Crater 2 came as a complete surprise despite having been predicted by MOND. Tidal disruption was only invoked after the fact – and in an ad hoc fashion. There is no way to know in advance which dwarfs are affected, as there is no criterion equivalent to that of Brada. We just say “gee, that’s a low velocity dispersion. Must have been disrupted.” That might be true, but it gives no explanation for why MOND predicted it in the first place – which is to say, it isn’t really an explanation at all.

I still do not understand is why MOND gets any predictions right if ΛCDM is the universe we live in, let alone so many. Shouldn’t happen. Makes no sense.

If this doesn’t confuse you, you are not thinking clearly.


*The other two dwarfs were also measured, but with only 4 stars in one and 6 in the other. These are too few for a meaningful velocity dispersion measurement.