Mass is a basic quantity. How much stuff does an astronomical object contain? For a galaxy, mass can mean many different things: that of its stars, stellar remnants (e.g., white dwarfs, neutron stars), atomic gas, molecular clouds, plasma (ionized gas), dust, Bok globules, black holes, habitable planets, biomass, intelligent life, very small rocks… these are all very different numbers for the same galaxy, because galaxies contain lots of different things. Two things that many scientists have settled on as Very Important are a galaxy’s stellar mass and its dark matter halo mass.
The mass of a galaxy’s dark matter halo is not well known. Most measurement provide only lower limits, as tracers fade out before any clear end is reached. Consequently, the “total” mass is a rather notional quantity. So we’ve adopted as a convention the mass M200 contained within an over-density of 200 times the critical density of the universe. This is a choice motivated by an ex-theory that would take an entire post to explain unsatisfactorily, so do not question the convention: all choices are bad, so we stick with it.
One of the long-standing problems the cold dark matter paradigm has is that the galaxy luminosity function should be steep but is observed to be shallow. This sketch shows the basic issue. The number density of dark matter halos as a function of mass is expected to be a power law – one that is well specified once the cosmology is known and a convention for the mass is adopted. The obvious expectation is that the galaxy luminosity function should just be a downshifted version of the halo mass function: one galaxy per halo, with the stellar mass proportional to the halo mass. This was such an obvious assumption [being provision (i) of canonical galaxy formation in LCDM] that it was not seriously questioned for over a decade. (Minor point: a turn down at the high mass end could be attributed to gas cooling times: the universe didn’t have time to cool and assemble a galaxy above some threshold mass, but smaller things had plenty of time for gas to cool and form stars.)

The galaxy luminosity function does not look like a shifted version of the halo mass function. It has the wrong slope at the faint end. At no point is the size of the shift equal to what one would expect from the mass of available baryons. The proportionality factor md is too small; this is sometimes called the over-cooling problem, in that a lot more baryons should have cooled to form stars than apparently did so. So, aside from the shape and the normalization, it’s a great match.
We obsessed about this problem all through the ’90s. At one point, I thought I had solved it. Low surface brightness galaxies were under-represented in galaxy surveys. They weren’t missed entirely, but their masses could be systematically underestimated. This might matter a lot because the associated volume corrections are huge. A small systematic in mass would get magnified into a big one in density. Sadly, after a brief period of optimism, it became clear that this could not work to solve the entire problem, which persists.
Circa 2000, a local version of the problem became known as the missing satellites problem. This is a down-shifted version of the mismatch between the galaxy luminosity function and the halo mass function that pervades the entire universe: few small galaxies are observed where many are predicted. To give visual life to the numbers we’re talking about, here is an image of the dark matter in a simulation of a Milky Way size galaxy:

In contrast, real galaxies have rather fewer satellites that meet the eye:

By 2010, we’d thrown in the towel, and decided to just accept that this aspect of the universe was too complicated to predict. The story now is that feedback changes the shape of the luminosity function at both the faint and the bright ends. Exactly how depends on who you ask, but the predicted halo mass function is sacrosanct so there must be physical processes that make it so. (This is an example of the Frenk Principle in action.)
Lacking a predictive theory, theorists instead came up with a clever trick to relate galaxies to their dark matter halos. This has come to be known as abundance matching. We measure the number density of galaxies as a function of stellar mass. We know, from theory, what the number density of dark matter halos should be as a function of halo mass. Then we match them up: galaxies of a given density live in halos of the corresponding density, as illustrated by the horizontal gray lines in the right panel of the figure above.
There have now been a number of efforts to quantify this. Four examples are given in the figure below (see this paper for references), together with kinematic mass estimates.

The abundance matching relations have a peak around a halo mass of 1012 M☉ and fall off to either side. This corresponds to the knee in the galaxy luminosity function. For whatever reason, halos of this mass seem to be most efficient at converting their available baryons into stars. The shape of these relations mean that there is a non-linear relation between stellar mass and halo mass. At the low mass end, a big range in stellar mass is compressed into a small range in halo mass. The opposite happens at high mass, where the most massive galaxies are generally presumed to be the “central” galaxy of a cluster of galaxies. We assign the most massive halos to big galaxies understanding that they may be surrounded by many subhalos, each containing a cluster galaxy.
Around the same time, I made a similar plot, but using kinematic measurements to estimate halo masses. Both methods are fraught with potential systematics, but they seem to agree reasonably well – at least over the range illustrated above. It gets dodgy above and below that. The agreement is particularly good for lower mass galaxies. There seems to be a departure for the most massive individual galaxies, but why worry about that when the glass is 3/4 full?
Skip ahead a decade, and some people think we’ve solved the missing satellite problem. One key ingredient of that solution is that the Milky Way resides in a halo that is on the lower end of the mass range that has traditionally been estimated for it (1 to 2 x 1012 M☉). This helps because the number of subhalos scales with mass: clusters are big halos with lots of galaxy-size halos; the Milky Way is a galaxy-sized halo with lots of smaller subhalos. Reality does not look like that, but having a lower mass means fewer subhalos, so that helps. It does not suffice. We must invoke feedback effects to make the relation between light and mass nonlinear. Then the lowest mass satellites may be too dim to detect: selection effects have to do a lot of work. It also helps to assume the distribution of satellites is isotropic, which looks to be true in the simulation, but not so much in reality where known dwarf satellites occupy a planar distribution. We also need to somehow fudge the too-big-to-fail problem, in which the more massive subhalos appear not to be occupied by luminous galaxies at all. Given all that, we can kinda sorta get in the right ballpark. Kinda, sorta, provided that we live in a galaxy whose halo mass is closer to 1012 M☉ than to 2 x 1012 M☉.
At an IAU meeting in Shanghai (in July 2019, before travel restrictions), the subject of the mass of the Milky Way was discussed at length. It being our home galaxy, there are many ways in which to constrain the mass, some of which take advantage of tracers that go out to greater distances than we can obtain elsewhere. Speaker after speaker used different methods to come to a similar conclusion, with the consensus hedging on the low side (roughly 1 – 1.5 x 1012 M☉). A nice consequence would be that the missing satellite problem may no longer be a problem.
Galaxies in general and the Milky Way in particular are different and largely distinct subfields. Different data studied by different people with distinctive cultures. In the discussion at the end of the session, Pieter van Dokkum pointed out that from the perspective of other galaxies, the halo mass ought to follow from abundance matching, which for a galaxy like the Milky Way ought to be more like 3 x 1012 M☉, considerably more than anyone had suggested, but hard to exclude because most of that mass could be at distances beyond the reach of the available tracers.
This was not well received.
The session was followed by a coffee break, and I happened to find myself standing in line next to Pieter. I was still processing his comment, and decided he was right – from a certain point of view. So we got to talking about it, and wound up making the plot below, which appears in a short research note. (For those who know the field, it might be assumed that Pieter and I hate each other. This is not true, but we do frequently disagree, so the fact that we do agree about this is itself worthy of note.)

The Milky Way and Andromeda are the 1012 M☉ gorillas of the Local Group. There are many dozens of dwarf galaxies, but none of them are comparable in mass, even with the boost provided by the non-linear relation between mass and luminosity. To astronomical accuracy, in terms of mass, the Milky Way plus Andromeda are the Local Group. There are many distinct constraints, on each galaxy as an individual, and on the Local Group as a whole. Any way we slice it, all three entities lie well off the relation expected from abundance matching.
There are several ways one could take it from here. One might suppose that abundance matching is correct, and we have underestimated the mass with other measurements. This happens all the time with rotation curves, which typically do not extend far enough out into the halo to give a good constraint on the total mass. This is hard to maintain for the Local Group, where we have lots of tracers in the form of dwarf satellites, and there are constraints on the motions of galaxies on still larger scales. Moreover, a high mass would be tragic for the missing satellite problem.
One might instead imagine that there is some scatter in the abundance matching relation, and we just happen to live in a galaxy that has a somewhat low mass for its luminosity. This is almost reasonable for the Milky Way, as there is some overlap between kinematic mass estimates and the expectations of abundance matching. But the missing satellite problem bites again unless we are pretty far off the central value of the abundance matching relation. Other Milky Way-like galaxies ought to fall on the other end of the spectrum, with more mass and more satellites. A lot of work is going on to look for satellites around other spirals, which is hard work (see NGC 6946 above). There is certainly scatter in the number of satellites from system to system, but whether this is theoretically sensible or enough to explain our Milky Way is not yet apparent.
There is a tendency in the literature to invoke scatter when and where needed. Here, it is important to bear in mind that there is little scatter in the Tully-Fisher relation. This is a relation between stellar mass and rotation velocity, with the latter supposedly set by the halo mass. We can’t have it both ways. Lots of scatter in the stellar mass-halo mass relation ought to cause a corresponding amount of scatter in Tully-Fisher. This is not observed. It is a much stronger than most people seem to appreciate, as even subtle effects are readily perceptible. Consequently, I think it unlikely that we can nuance the relation between halo mass and observed rotation speed to satisfy both relations without a lot of fine-tuning, which is usually a sign that something is wrong.

A lot of effort has been put into beating down the missing satellite problem around the Milky Way. Matters are worse for Andromeda. Kinematic halo mass estimates are typically in the same ballpark as the Milky Way. Some are a bit bigger, some are lower. Lower is a surprise, because the stellar mass of M31 is clearly bigger than that of the Milky Way, placing it is above the turnover where the efficiency of star formation is maximized. In this regime, a little stellar mass goes a long way in terms of halo mass. Abundance matching predicts that a galaxy of Andromeda’s stellar mass should reside in a dark matter halo of at least 1013 M☉. That’s quite a bit more than 1 or 2 x 1012 M☉, even by astronomical standards. Put another way, according to abundance matching, the Local Group should have the Milky Way as its most massive occupant. Just the Milky Way. Not the Milky Way plus Andromeda. Despite this, the Local Group is not anomalous among similar groups.
Words matter. A lot boils down to what we consider to be “close enough” to call similar. I do not consider the Milky Way and Andromeda to be all that similar. They are both giant spirals, yes, but galaxies are all individuals. Being composed of hundreds of billions of stars, give or take, leaves a lot of room for differences. In this case, the Milky Way and Andromeda are easily distinguished in the Tully-Fisher plane. Andromeda is about twice the baryonic mass of the Milky Way. It also rotates faster. The error bars on these quantities do not come close to overlapping – that would be one criterion for considering them to be similar – a criterion they do not meet. Even then, there could be other features that might be readily distinguished, but let’s say a rough equality in the Tully-Fisher plane would indicate stellar and halo masses that are “close enough” for our present discussion. They aren’t: to me, the Milky Way and M31 are clearly different galaxies.
I spent a fair amount of time reading the recent literature on satellites searches, and I was struck by the ubiquity with which people make the opposite assumption, treating the Milky Way and Andromeda as interchangeable galaxies of similar mass. Why would they do this? If one looks at the kinematic halo mass as the defining characteristic of a galaxy, they’re both close to 1012 M☉, with overlapping error bars on M200. By that standard, it seems fair. Is it?
Luminosity is observable. Rotation speed is observable. There are arguments to be had about how to convert luminosity into stellar mass, and what rotation speed measure is “best.” These are sometimes big arguments, but they are tiny in scale compared to estimating notional quantities like the halo mass. The mass M200 is not an observable quantity. As such, we have no business using it as a defining characteristic of a galaxy. You know a galaxy when you see it. The same cannot be said of a dark matter halo. Literally.
If, for some theoretically motivated reason, we want to use halo mass as a standard then we need to at least use a consistent method to assess its value from directly observable quantities. The methods we use for the Milky Way and M31 are not applicable beyond the Local Group. Nowhere else in the universe do we have such an intimate picture of the kinematic mass from a wide array of independent methods with tracers extending to such large radii. There are other standards we could apply, like the Tully-Fisher relation. That we can do outside the Local Group, but by that standard we would not infer that M31 and the Milky Way are the same. Other observables we can fairly apply to other galaxies are their luminosities (stellar masses) and cosmic number densities (abundance matching). From that perspective, what we know from all the other galaxies in the universe is that the factor of ~2 difference in stellar mass between Andromeda and the Milky Way should be huge in terms of halo mass. If it were anywhere else in the universe, we wouldn’t treat these two galaxies as interchangeably equal. This is the essence of Pieter’s insight: abundance matching is all about the abundance of dark matter halos, so that would seem to be the appropriate metric by which to predict the expected number of satellites, not the kinematic halo mass that we can’t measure in the same way anywhere else in the universe.
That isn’t to say we don’t have some handle on kinematic halo masses, it’s just that most of that information comes from rotation curves that don’t typically extend as far as the tracers that we have in the Local Group. Some rotation curves are more extended than others, so one has to account for that variation. Typically, we can only put a lower limit on the halo mass, but if we assume a profile like NFW – the standard thing to do in LCDM, then we can sometimes exclude halos that are too massive.
Abundance matching has become important enough to LCDM that we included it as a prior in fitting dark matter halo models to rotation curves. For example:

NFW halos are self-similar: low mass halos look very much like high mass halos over the range that is constrained by data. Consequently, if you have some idea what the total mass of the halo should be, as abundance matching provides, and you impose that as a prior, the fits for most galaxies say “OK.” The data covering the visible galaxy have little power to constrain what is going on with the dark matter halo at much larger radii, so the fits literally fall into line when told to do so, as seen in Pengfei‘s work.
That we can impose abundance matching as a prior does not necessarily mean the result is reasonable. The highest halo masses that abundance matching wants in the plot above are crazy talk from a kinematic perspective. I didn’t put too much stock in this, as the NFW halo itself, the go-to standard of LCDM, provides the worst description of the data among all the dozen or so halo models that we considered. Still, we did notice that even with abundance matching imposed as a prior, there are a lot more points above the line than below it at the high mass end (above the bend in the figure above). The rotation curves are sometimes pushing back against the imposed prior; they often don’t want such a high halo mass. This was explored in some detail by Posti et al., who found a similar effect.
I decided to turn the question around. Can we use abundance matching to predict the halo and hence rotation curve of a massive galaxy? The largest spiral in the local universe, UGC 2885, has one of the most extended rotation curves known, meaning that it does provide some constraint on the halo mass. This galaxy has been known as an important case since Vera Rubin’s work in the ’70s. With a modern distance scale, its rotation curve extends out 80 kpc. That’s over a quarter million light-years – a damn long way, even by the standards of galaxies. It also rotates remarkably fast, just shy of 300 km/s. It is big and massive.
(As an aside, Vera once offered a prize for anyone who found a disk that rotated faster than 300 km/s. Throughout her years of looking at hundreds of galaxies, UGC 2885 remained the record holder, with 300 seeming to be a threshold that spirals did not exceed. She told me that she did pay out, but on a technicality: someone showed her a gas disk around a supermassive black hole in Keplerian rotation that went up to 500 km/s at its peak. She lamented that she had been imprecise in her language, as that was nothing like what she meant, which was the flat rotation speed of a spiral galaxy.)
That aside aside, if we take abundance matching at face value, then the stellar mass of a galaxy predicts the mass of its dark matter halo. Using the most conservative (in that it returns the lowest halo mass) of the various abundance matching relations indicates that with a stellar mass of about 2 x 1011 M☉, UGC 2885 should have a halo mass of 3 x 1013 M☉. Combining this with a well-known relation between halo concentration and mass for NFW halos, we then know what the rotation curve should be. Doing this for UGC 2885 yields a tragic result:

The data do not allow for the predicted amount of dark matter. If we fit the rotation curve, we obtain a “mere” M200 = 5 x 1012 M☉. Note that this means that UGC 2885 is basically the Milky Way and Andromeda added together in terms of both stellar mass and halo mass – if added to the M*-M200 plot above, it would land very close to the open circle representing the more massive halo estimate for the combination of MW+M31, and be just as discrepant from the abundance matching relations. We get the same result regardless of which direction we look at it from.
Objectively, 5 x 1012 M☉ is a huge dark matter halo for a single galaxy. It’s just not the yet-more massive halo that is predicted by abundance matching. In this context, UGC 2885 apparently has a serious missing satellites problem, as it does not appear to be swimming in a sea of satellite galaxies the way we’d expect for the central galaxy of such high mass halo.

It is tempting to write this off as a curious anecdote. Another outlier. Sure, that’s always possible, but this is more than a bit ridiculous. Anyone who wants to go this route I refer to Snoop Dog.
I spent much of my early career obsessed with selection effects. These preclude us from seeing low surface brightness galaxies as readily as brighter ones. However, it isn’t binary – a galaxy has to be extraordinarily low surface brightness before it becomes effectively invisible. The selection effect is a bias – and a very strong one – but not an absolute screen that prevents us from finding low surface brightness galaxies. That makes it very hard to sustain the popular notion that there are lots of subhalos that simply contain ultradiffuse galaxies that cannot currently be seen. I’ve been down this road many times as an optimist in favor of this interpretation. It hasn’t worked out. Selection effects are huge, but still nowhere near big enough to overcome the required deficit.
Having the satellite galaxies that inhabit subhalos be low in surface brightness is a necessary but not sufficient criterion. It is also necessary to have a highly non-linear stellar mass-halo mass relation at low mass. In effect, luminosity and halo mass become decoupled: satellite galaxies spanning a vast range in luminosity must live in dark matter halos that cover only a tiny range. This means that it should not be possible to predict stellar motions in these galaxies from their luminosity. The relation between mass and light has just become too weak and messy.
And yet, we can do exactly that. Over and over again. This simply should not be possible in LCDM.