By the wayside

By the wayside

I noted last time that in the rush to analyze the first of the JWST data, that “some of these candidate high redshift galaxies will fall by the wayside.” As Maurice Aabe notes in the comments there, this has already happened.

I was concerned because of previous work with Jay Franck in which we found that photometric redshifts were simply not adequately precise to identify the clusters and protoclusters we were looking for. Consequently, we made it a selection criterion when constructing the CCPC to require spectroscopic redshifts. The issue then was that it wasn’t good enough to have a rough idea of the redshift, as the photometric method often provides (what exactly it provides depends in a complicated way on the redshift range, the stellar population modeling, and the wavelength range covered by the observational data that is available). To identify a candidate protocluster, you want to know that all the potential member galaxies are really at the same redshift.

This requirement is somewhat relaxed for the field population, in which a common approach is to ask broader questions of the data like “how many galaxies are at z ~ 6? z ~ 7?” etc. Photometric redshifts, when done properly, ought to suffice for this. However, I had noticed in Jay’s work that there were times when apparently reasonable photometric redshift estimates went badly wrong. So it made the ganglia twitch when I noticed that in early JWST work – specifically Table 2 of the first version of a paper by Adams et al. – there were seven objects with candidate photometric redshifts, and three already had a preexisting spectroscopic redshift. The photometric redshifts were mostly around z ~ 9.7, but the three spectroscopic redshifts were all smaller: two z ~ 7.6, one 8.5.

Three objects are not enough to infer a systematic bias, so I made a mental note and moved on. But given our previous experience, it did not inspire confidence that all the available cases disagreed, and that all the spectroscopic redshifts were lower than the photometric estimates. These things combined to give this observer a serious case of “the heebie-jeebies.”

Adams et al have now posted a revised analysis in which many (not all) redshifts change, and change by a lot. Here is their new Table 4:

Table 4 from Adams et al. (2022, version 2).

There are some cases here that appear to confirm and improve the initial estimate of a high redshift. For example, SMACS-z11e had a very uncertain initial redshift estimate. In the revised analysis, it is still at z~11, but with much higher confidence.

That said, it is hard to put a positive spin on these numbers. 23 of 31 redshifts change, and many change drastically. Those that change all become smaller. The highest surviving redshift estimate is z ~ 15 for SMACS-z16b. Among the objects with very high candidate redshifts, some are practically local (e.g., SMACS-z12a, F150DB-075, F150DA-058).

So… I had expected that this could go wrong, but I didn’t think it would go this wrong. I was concerned about the photometric redshift method – how well we can model stellar populations, especially at young ages dominated by short lived stars that in the early universe are presumably lower metallicity than well-studied nearby examples, the degeneracies between galaxies at very different redshifts but presenting similar colors over a finite range of observed passbands, dust (the eternal scourge of observational astronomy, expected to be an especially severe affliction in the ultraviolet that gets redshifted into the near-IR for high-z objects, both because dust is very efficient at scattering UV photons and because this efficiency varies a lot with metallicity and the exact gran size distribution of the dust), when is a dropout really a dropout indicating the location of the Lyman break and when is it just a lousy upper limit of a shabby detection, etc. – I could go on, but I think I already have. It will take time to sort these things out, even in the best of worlds.

We do not live in the best of worlds.

It appears that a big part of the current uncertainty is a calibration error. There is a pipeline for handling JWST data that has an in-built calibration for how many counts in a JWST image correspond to what astronomical magnitude. The JWST instrument team warned us that the initial estimate of this calibration would “improve as we go deeper into Cycle 1” – see slide 13 of Jane Rigby’s AAS presentation.

I was not previously aware of this caveat, though I’m certainly not surprised by it. This is how these things work – one makes an initial estimate based on the available data, and one improves it as more data become available. Apparently, JWST is outperforming its specs, so it is seeing as much as 0.3 magnitudes deeper than anticipated. This means that people were inferring objects to be that much too bright, hence the appearance of lots of galaxies that seem to be brighter than expected, and an apparent systematic bias to high z for photometric redshift estimators.

I was not at the AAS meeting, let alone Dr. Rigby’s presentation there. Even if I had been, I’m not sure I would have appreciated the potential impact of that last bullet point on nearly the last slide. So I’m not the least bit surprised that this error has propagated into the literature. This is unfortunate, but at least this time it didn’t lead to something as bad as the Challenger space shuttle disaster in which the relevant warning from the engineers was reputed to have been buried in an obscure bullet point list.

So now we need to take a deep breath and do things right. I understand the urgency to get the first exciting results out, and they are still exciting. There are still some interesting high z candidate galaxies, and lots of empirical evidence predating JWST indicating that galaxies may have become too big too soon. However, we can only begin to argue about the interpretation of this once we agree to what the facts are. At this juncture, it is more important to get the numbers right than to post early, potentially ill-advised takes on arXiv.

That said, I’d like to go back to writing my own ill-advised take to post on arXiv now.

Two Hypotheses

Two Hypotheses

OK, basic review is over. Shit’s gonna get real. Here I give a short recounting of the primary reason I came to doubt the dark matter paradigm. This is entirely conventional – my concern about the viability of dark matter is a contradiction within its own context. It had nothing to do with MOND, which I was blissfully ignorant of when I ran head-long into this problem in 1994. Most of the community chooses to remain blissfully ignorant, which I understand: it’s way more comfortable. It is also why the field has remained mired in the ’90s, with all the apparent progress since then being nothing more than the perpetual reinvention of the same square wheel.


To make a completely generic point that does not depend on the specifics of dark matter halo profiles or the details of baryonic assembly, I discuss two basic hypotheses for the distribution of disk galaxy size at a given mass. These broad categories I label SH (Same Halo) and DD (Density begets Density) following McGaugh and de Blok (1998a). In both cases, galaxies of a given baryonic mass are assumed to reside in dark matter halos of a corresponding total mass. Hence, at a given halo mass, the baryonic mass is the same, and variations in galaxy size follow from one of two basic effects:

  • SH: variations in size follow from variations in the spin of the parent dark matter halo.
  • DD: variations in surface brightness follow from variations in the density of the dark matter halo.

Recall that at a given luminosity, size and surface brightness are not independent, so variation in one corresponds to variation in the other. Consequently, we have two distinct ideas for why galaxies of the same mass vary in size. In SH, the halo may have the same density profile ρ(r), and it is only variations in angular momentum that dictate variations in the disk size. In DD, variations in the surface brightness of the luminous disk are reflections of variations in the density profile ρ(r) of the dark matter halo. In principle, one could have a combination of both effects, but we will keep them separate for this discussion, and note that mixing them defeats the virtues of each without curing their ills.

The SH hypothesis traces back to at least Fall and Efstathiou (1980). The notion is simple: variations in the size of disks correspond to variations in the angular momentum of their host dark matter halos. The mass destined to become a dark matter halo initially expands with the rest of the universe, reaching some maximum radius before collapsing to form a gravitationally bound object. At the point of maximum expansion, the nascent dark matter halos torque one another, inducing a small but non-zero net spin in each, quantified by the dimensionless spin parameter λ (Peebles, 1969). One then imagines that as a disk forms within a dark matter halo, it collapses until it is centrifugally supported: λ → 1 from some initially small value (typically λ ​≈ ​0.05, Barnes & Efstathiou, 1987, with some modest distribution about this median value). The spin parameter thus determines the collapse factor and the extent of the disk: low spin halos harbor compact, high surface brightness disks while high spin halos produce extended, low surface brightness disks.

The distribution of primordial spins is fairly narrow, and does not correlate with environment (Barnes & Efstathiou, 1987). The narrow distribution was invoked as an explanation for Freeman’s Law: the small variation in spins from halo to halo resulted in a narrow distribution of disk central surface brightness (van der Kruit, 1987). This association, while apparently natural, proved to be incorrect: when one goes through the mathematics to transform spin into scale length, even a narrow distribution of initial spins predicts a broad distribution in surface brightness (Dalcanton, Spergel, & Summers, 1997; McGaugh and de Blok, 1998a). Indeed, it predicts too broad a distribution: to prevent the formation of galaxies much higher in surface brightness than observed, one must invoke a stability criterion (Dalcanton, Spergel, & Summers, 1997; McGaugh and de Blok, 1998a) that precludes the existence of very high surface brightness disks. While it is physically quite reasonable that such a criterion should exist (Ostriker and Peebles, 1973), the observed surface density threshold does not emerge naturally, and must be inserted by hand. It is an auxiliary hypothesis invoked to preserve SH. Once done, size variations and the trend of average size with mass work out in reasonable quantitative detail (e.g., Mo et al., 1998).

Angular momentum conservation must hold for an isolated galaxy, but the assumption made in SH is stronger: baryons conserve their share of the angular momentum independently of the dark matter. It is considered a virtue that this simple assumption leads to disk sizes that are about right. However, this assumption is not well justified. Baryons and dark matter are free to exchange angular momentum with each other, and are seen to do so in simulations that track both components (e.g., Book et al., 2011; Combes, 2013; Klypin et al., 2002). There is no guarantee that this exchange is equitable, and in general it is not: as baryons collapse to form a small galaxy within a large dark matter halo, they tend to lose angular momentum to the dark matter. This is a one-way street that runs in the wrong direction, with the final destination uncomfortably invisible with most of the angular momentum sequestered in the unobservable dark matter. Worse still, if we impose rigorous angular momentum conservation among the baryons, the result is a disk with a completely unrealistic surface density profile (van den Bosch, 2001a). It then becomes necessary to pick and choose which baryons manage to assemble into the disk and which are expelled or otherwise excluded, thereby solving one problem by creating another.

Early work on LSB disk galaxies led to a rather different picture. Compared to the previously known population of HSB galaxies around which our theories had been built, the LSB galaxy population has a younger mean stellar age (de Blok & van der Hulst, 1998; McGaugh and Bothun, 1994), a lower content of heavy elements (McGaugh, 1994), and a systematically higher gas fraction (McGaugh and de Blok, 1997; Schombert et al., 1997). These properties suggested that LSB galaxies evolve more gradually than their higher surface brightness brethren: they convert their gas into stars over a much longer timescale (McGaugh et al., 2017). The obvious culprit for this difference is surface density: lower surface brightness galaxies have less gravity, hence less ability to gather their diffuse interstellar medium into dense clumps that could form stars (Gerritsen and de Blok, 1999; Mihos et al., 1999). It seemed reasonable to ascribe the low surface density of the baryons to a correspondingly low density of their parent dark matter halos.

One way to think about a region in the early universe that will eventually collapse to form a galaxy is as a so-called top-hat over-density. The mass density Ωm → 1 ​at early times, irrespective of its current value, so a spherical region (the top-hat) that is somewhat over-dense early on may locally exceed the critical density. We may then consider this finite region as its own little closed universe, and follow its evolution with the Friedmann equations with Ω ​> ​1. The top-hat will initially expand along with the rest of the universe, but will eventually reach a maximum radius and recollapse. When that happens depends on the density. The greater the over-density, the sooner the top-hat will recollapse. Conversely, a lesser over-density will take longer to reach maximum expansion before recollapsing.

Everything about LSB galaxies suggested that they were lower density, late-forming systems. It therefore seemed quite natural to imagine a distribution of over-densities and corresponding collapse times for top-hats of similar mass, and to associate LSB galaxy with the lesser over-densities (Dekel and Silk, 1986; McGaugh, 1992). More recently, some essential aspects of this idea have been revived under the monicker of “assembly bias” (e.g. Zehavi et al., 2018).

The work that informed the DD hypothesis was based largely on photometric and spectroscopic observations of LSB galaxies: their size and surface brightness, color, chemical abundance, and gas content. DD made two obvious predictions that had not yet been tested at that juncture. First, late-forming halos should reside preferentially in low density environments. This is a generic consequence of Gaussian initial conditions: big peaks defined on small (e.g., galaxy) scales are more likely to be found in big peaks defined on large (e.g., cluster) scales, and vice-versa. Second, the density of the dark matter halo of an LSB galaxy should be lower than that of an equal mass halo containing and HSB galaxy. This predicts a clear signature in their rotation speeds, which should be lower for lower density.

The prediction for the spatial distribution of LSB galaxies was tested by Bothun et al. (1993) and Mo et al. (1994). The test showed the expected effect: LSB galaxies were less strongly clustered than HSB galaxies. They are clustered: both galaxy populations follow the same large scale structure, but HSB galaxies adhere more strongly to it. In terms of the correlation function, the LSB sample available at the time had about half the amplitude r0 as comparison HSB samples (Mo et al., 1994). The effect was even more pronounced on the smallest scales (<2 Mpc: Bothun et al., 1993), leading Mo et al. (1994) to construct a model that successfully explained both small and large scale aspects of the spatial distribution of LSB galaxies simply by associating them with dark matter halos that lacked close interactions with other halos. This was strong corroboration of the DD hypothesis.

One way to test the prediction of DD that LSB galaxies should rotate more slowly than HSB galaxies was to use the Tully-Fisher relation (Tully and Fisher, 1977) as a point of reference. Originally identified as an empirical relation between optical luminosity and the observed line-width of single-dish 21 ​cm observations, more fundamentally it turns out to be a relation between the baryonic mass of a galaxy (stars plus gas) and its flat rotation speed the Baryonic Tully-Fisher relation (BTFR: McGaugh et al., 2000). This relation is a simple power law of the form

Mb = AVf4 (equation 1)

with A ​≈ ​50 ​M km−4 s4 (McGaugh, 2005).

Aaronson et al. (1979) provided a straightforward interpretation for a relation of this form. A test particle orbiting a mass M at a distance R will have a circular speed V

V2 = GM/R (equation 2)

where G is Newton’s constant. If we square this, a relation like the Tully-Fisher relation follows:

V4 = (GM/R)2 &propto; MΣ (equation 3)

where we have introduced the surface mass density Σ ​= ​M/R2. The Tully-Fisher relation M ​∝ ​V4 is recovered if Σ is constant, exactly as expected from Freeman’s Law (Freeman, 1970).

LSB galaxies, by definition, have central surface brightnesses (and corresponding stellar surface densities Σ0) that are less than the Freeman value. Consequently, DD predicts, through equation (3), that LSB galaxies should shift systematically off the Tully-Fisher relation: lower Σ means lower velocity. The predicted effect is not subtle2 (Fig. 4). For the range of surface brightness that had become available, the predicted shift should have stood out like the proverbial sore thumb. It did not (Hoffman et al., 1996; McGaugh and de Blok, 1998a; Sprayberry et al., 1995; Zwaan et al., 1995). This had an immediate impact on galaxy formation theory: compare Dalcanton et al. (1995, who predict a shift in Tully-Fisher with surface brightness) with Dalcanton et al. (1997b, who do not).

Fig. 4. The Baryonic Tully-Fisher relation and residuals. The top panel shows the flat rotation velocity of galaxies in the SPARC database (Lelli et al., 2016a) as a function of the baryonic mass (stars plus gas). The sample is restricted to those objects for which both quantities are measured to better than 20% accuracy. The bottom panel shows velocity residuals around the solid line in the top panel as a function of the central surface density of the stellar disks. Variations in the stellar surface density predict variations in velocity along the dashed line. These would translate to shifts illustrated by the dotted lines in the top panel, with each dotted line representing a shift of a factor of ten in surface density. The predicted dependence on surface density is not observed (Courteau & Rix, 1999; McGaugh and de Blok, 1998a; Sprayberry et al., 1995; Zwaan et al., 1995).

Instead of the systematic variation of velocity with surface brightness expected at fixed mass, there was none. Indeed, there is no hint of a second parameter dependence. The relation is incredibly tight by the standards of extragalactic astronomy (Lelli et al., 2016b): baryonic mass and the flat rotation speed are practically interchangeable.

The above derivation is overly simplistic. The radius at which we should make a measurement is ill-defined, and the surface density is dynamical: it includes both stars and dark matter. Moreover, galaxies are not spherical cows: one needs to solve the Poisson equation for the observed disk geometry of LTGs, and account for the varying radial contributions of luminous and dark matter. While this can be made to sound intimidating, the numerical computations are straightforward and rigorous (e.g., Begeman et al., 1991; Casertano & Shostak, 1980; Lelli et al., 2016a). It still boils down to the same sort of relation (modulo geometrical factors of order unity), but with two mass distributions: one for the baryons Mb(R), and one for the dark matter MDM(R). Though the dark matter is more massive, it is also more extended. Consequently, both components can contribute non-negligibly to the rotation over the observed range of radii:

V2(R) = GM/R = G(Mb/R + MDM/R), (equation 4)

(4)where for clarity we have omitted* geometrical factors. The only absolute requirement is that the baryonic contribution should begin to decline once the majority of baryonic mass is encompassed. It is when rotation curves persist in remaining flat past this point that we infer the need for dark matter.

A recurrent problem in testing galaxy formation theories is that they seldom make ironclad predictions; I attempt a brief summary in Table 1. SH represents a broad class of theories with many variants. By construction, the dark matter halos of galaxies of similar stellar mass are similar. If we associate the flat rotation velocity with halo mass, then galaxies of the same mass have the same circular velocity, and the problem posed by Tully-Fisher is automatically satisfied.

Table 1. Predictions of DD and SH for LSB galaxies.

ObservationDDSH
Evolutionary rate++
Size distribution++
Clustering+X
Tully-Fisher relationX?
Central density relation+X

While it is common to associate the flat rotation speed with the dark matter halo, this is a half-truth: the observed velocity is a combination of baryonic and dark components (eq. (4)). It is thus a rather curious coincidence that rotation curves are as flat as they are: the Keplerian decline of the baryonic contribution must be precisely balanced by an increasing contribution from the dark matter halo. This fine-tuning problem was dubbed the “disk-halo conspiracy” (Bahcall & Casertano, 1985; van Albada & Sancisi, 1986). The solution offered for the disk-halo conspiracy was that the formation of the baryonic disk has an effect on the distribution of the dark matter. As the disk settles, the dark matter halo respond through a process commonly referred to as adiabatic compression that brings the peak velocities of disk and dark components into alignment (Blumenthal et al., 1986). Some rearrangement of the dark matter halo in response to the change of the gravitational potential caused by the settling of the disk is inevitable, so this seemed a plausible explanation.

The observation that LSB galaxies obey the Tully-Fisher relation greatly compounds the fine-tuning (McGaugh and de Blok, 1998a; Zwaan et al., 1995). The amount of adiabatic compression depends on the surface density of stars (Sellwood and McGaugh, 2005b): HSB galaxies experience greater compression than LSB galaxies. This should enhance the predicted shift between the two in Tully-Fisher. Instead, the amplitude of the flat rotation speed remains unperturbed.

The generic failings of dark matter models was discussed at length by McGaugh and de Blok ​(1998a). The same problems have been encountered by others. For example, Fig. 5 shows model galaxies formed in a dark matter halo with identical total mass and density profile but with different spin parameters (van den Bosch, ​2001b). Variations in the assembly and cooling history were also considered, but these make little difference and are not relevant here. The point is that smaller (larger) spin parameters lead to more (less) compact disks that contribute more (less) to the total rotation, exactly as anticipated from variations in the term Mb/R in equation (4). The nominal variation is readily detectable, and stands out prominently in the Tully-Fisher diagram (Fig. 5). This is exactly the same fine-tuning problem that was pointed out by Zwaan et al. ​(1995) and McGaugh and de Blok ​(1998a).

What I describe as a fine-tuning problem is not portrayed as such by van den Bosch (2000) and van den Bosch and Dalcanton (2000), who argued that the data could be readily accommodated in the dark matter picture. The difference is between accommodating the data once known, and predicting it a priori. The dark matter picture is extraordinarily flexible: one is free to distribute the dark matter as needed to fit any data that evinces a non-negative mass discrepancy, even data that are wrong (de Blok & McGaugh, 1998). It is another matter entirely to construct a realistic model a priori; in my experience it is quite easy to construct models with plausible-seeming parameters that bear little resemblance to real galaxies (e.g., the low-spin case in Fig. 5). A similar conundrum is encountered when constructing models that can explain the long tidal tails observed in merging and interacting galaxies: models with realistic rotation curves do not produce realistic tidal tails, and vice-versa (Dubinski et al., 1999). The data occupy a very narrow sliver of the enormous volume of parameter space available to dark matter models, a situation that seems rather contrived.

Fig. 5. Model galaxy rotation curves and the Tully-Fisher relation. Rotation curves (left panel) for model galaxies of the same mass but different spin parameters λ from van den Bosch (2001b, see his Fig. 3). Models with lower spin have more compact stellar disks that contribute more to the rotation curve (V2 ​= ​GM/R; R being smaller for the same M). These models are shown as square points on the Baryonic Tully-Fisher relation (right) along with data for real galaxies (grey circles: Lelli et al., 2016b) and a fit thereto (dashed line). Differences in the cooling history result in modest variation in the baryonic mass at fixed halo mass as reflected in the vertical scatter of the models. This is within the scatter of the data, but variation due to the spin parameter is not.

Both DD and SH predict residuals from Tully-Fisher that are not observed. I consider this to be an unrecoverable failure for DD, which was my hypothesis (McGaugh, 1992), so I worked hard to salvage it. I could not. For SH, Tully-Fisher might be recovered in the limit of dark matter domination, which requires further consideration.


I will save the further consideration for a future post, as that can take infinite words (there are literally thousands of ApJ papers on the subject). The real problem that rotation curve data pose generically for the dark matter interpretation is the fine-tuning required between baryonic and dark matter components – the balancing act explicit in the equations above. This, by itself, constitutes a practical falsification of the dark matter paradigm.

Without going into interesting but ultimately meaningless details (maybe next time), the only way to avoid this conclusion is to choose to be unconcerned with fine-tuning. If you choose to say fine-tuning isn’t a problem, then it isn’t a problem. Worse, many scientists don’t seem to understand that they’ve even made this choice: it is baked into their assumptions. There is no risk of questioning those assumptions if one never stops to think about them, much less worry that there might be something wrong with them.

Much of the field seems to have sunk into a form of scientific nihilism. The attitude I frequently encounter when I raise this issue boils down to “Don’t care! Everything will magically work out! LA LA LA!”


*Strictly speaking, eq. (4) only holds for spherical mass distributions. I make this simplification here to emphasize the fact that both mass and radius matter. This essential scaling persists for any geometry: the argument holds in complete generality.

Are there credible deviations from the baryonic Tully-Fisher relation?

Are there credible deviations from the baryonic Tully-Fisher relation?

There is a rule of thumb in scientific publication that if a title is posed a question, the answer is no.

It sucks being so far ahead of the field that I get to watch people repeat the mistakes I made (or almost made) and warned against long ago. There have been persistent claims of deviations of one sort or another from the Baryonic Tully-Fisher relation (BTFR). So far, these have all been obviously wrong, for reasons we’ve discussed before. It all boils down to data quality. The credibility of data is important, especially in astronomy.

Here is a plot of the BTFR for all the data I have ready at hand, both for gas rich galaxies and the SPARC sample:

Baryonic mass (stars plus gas) as a function of the rotation speed measured at the outermost detected radius.

A relation is clear in the plot above, but it’s a mess. There’s lots of scatter, especially at low mass. There is also a systematic tendency for low mass galaxies to fall to the left of the main relation, appearing to rotate too slowly for their mass.

There is no quality control in the plot above. I have thrown all the mud at the wall. Let’s now do some quality control. The plotted quantities are the baryonic mass and the flat rotation speed. We haven’t actually measured the flat rotation speed in all these cases. For some, we’ve simply taken the last measured point. This was an issue we explicitly pointed out in Stark et al (2009):

Fig. 1 from Stark et al (2009): Examples of rotation curves (Swaters et al. 2009) that do and do not satisfy the flatness criterion. The rotation curve of UGC 4173 (top) rises continuously and does not meet the flatness criterion. UGC 5721 (center) is an ideal case with clear flattening of the rotational velocity. UGC 4499 marginally satisfies the flatness criterion.

If we include a galaxy like UGC 4173, we expect it will be offset to the low velocity side because we haven’t measured the flat rotation speed. We’ve merely taken that last point and hoped it is close enough. Sometimes it is, depending on your tolerance for systematic errors. But the plain fact is that we haven’t measured the flat rotation speed in this case. We don’t even know if it has one; it is only empirical experience with other examples that lead us to expect it to flatten if we manage to observe further out.

For our purpose here, it is as if we hadn’t measured this galaxy at all. So let’s not pretend like we have, and restrict the plot to galaxies for which the flat velocity is measured:

The same as the first plot, restricted to galaxies for which the flat rotation speed has been measured.

The scatter in the BTFR decreases dramatically when we exclude the galaxies for which we haven’t measured the relevant quantities. This is a simple matter of data quality. We’re no longer pretending to have measured a quantity that we haven’t measured.

There are still some outliers as there are still things that can go wrong. Inclinations are a challenge for some galaxies, as are distances determinations. Remember that Tully-Fisher was first employed as a distance indicator. If we look at the plot above from that perspective, the outliers have obviously been assigned the wrong distance, and we would assign a new one by putting them on the relation. That, in a nutshell, is how astronomical distance indicators work.

If we restrict the data to those with accurate measurements, we get

Same as the plot above, restricted to galaxies for which the quantities measured on both axes have been measured to an accuracy of 20% or better.

Now the outliers are gone. They were outliers because they had crappy data. This is completely unsurprising. Some astronomical data are always crappy. You plot crap against crap, you get crap. If, on the other hand, you look at the high quality data, you get a high quality correlation. Even then, you can never be sure that you’ve excluded all the crap, as there are often unknown unknowns – systematic errors you don’t know about and can’t control for.

We have done the exercise of varying the tolerance limits on data quality many times. We have shown that the scatter varies as expected with data quality. If we consider high quality data, we find a small scatter in the BTFR. If we consider low quality data, we get to plot more points, but the scatter goes up. You can see this by eye above. We can quantify this, and have. The amount of scatter varies as expected with the size of the uncertainties. Bigger errors, bigger scatter. Smaller errors, smaller scatter. This shouldn’t be hard to understand.

So why do people – many of them good scientists – keep screwing this up?

There are several answers. One is that measuring the flat rotation speed is hard. We have only done it for a couple hundred galaxies. This seems like a tiny number in the era of the Sloan Digitial Sky Survey, which enables any newbie to assemble a sample of tens of thousands of galaxies… with photometric data. It doesn’t provide any kinematic data. Measuring the stellar mass with the photometric data doesn’t do one bit of good for this problem if you don’t have the kinematic axis to plot against. Consequently, it doesn’t matter how big such a sample is.

You have zero data.

Other measurements often provide a proxy measurement that seems like it ought to be close enough to use. If not the flat rotation speed, maybe you have a line width or a maximum speed or V2.2 or the hybrid S0.5 or some other metric. That’s fine, so long as you recognize you’re plotting something different so should expect to get something different – not the BTFR. Again, we’ve shown that the flat rotation speed is the measure that minimizes the scatter; if you utilize some other measure you’re gonna get more scatter. That may be useful for some purposes, but it only tells you about what you measured. It doesn’t tell you anything about the scatter in the BTFR constructed with the flat rotation speed if you didn’t measure the flat rotation speed.

Another possibility is that there exist galaxies that fall off the BTFR that we haven’t observed yet. It is a big universe, after all. This is a known unknown unknown: we know that we don’t know if there are non-conforming galaxies. If the relation is indeed absolute, then we never can find any, but never can we know that they don’t exist, only that we haven’t yet found any credible examples.

I’ve addressed the possibility of nonconforming galaxies elsewhere, so all I’ll say here is that I have spent my entire career seeking out the extremes in galaxy properties. Many times I have specifically sought out galaxies that should deviate from the BTFR for some clear reason, only to be surprised when they fall bang on the BTFR. Over and over and over again. It makes me wonder how Vera Rubin felt when her observations kept turning up flat rotation curves. Shouldn’t happen, but it does – over and over and over again. So far, I haven’t found any credible deviations from the BTFR, nor have I seen credible cases provided by others – just repeated failures of quality control.

Finally, an underlying issue is often – not always, but often – an obsession with salvaging the dark matter paradigm. That’s hard to do if you acknowledge that the observed BTFR – its slope, normalization, lack of scale length residuals, negligible intrinsic scatter; indeed, the very quantities that define it, were anticipated and explicitly predicted by MOND and only MOND. It is easy to confirm the dark matter paradigm if you never acknowledge this to be a problem. Often, people redefine the terms of the issue in some manner that is more tractable from the perspective of dark matter. From that perspective, neither the “cold” baryonic mass nor the flat rotation speed have any special meaning, so why even consider them? That is the road to MONDness.

A brief history of the Radial Acceleration Relation

A brief history of the Radial Acceleration Relation

In science, all new and startling facts must encounter in sequence the responses

1. It is not true!

2. It is contrary to orthodoxy.

3. We knew it all along.

Louis Agassiz (circa 1861)

This expression exactly depicts the progression of the radial acceleration relation. Some people were ahead of this curve, others are still behind it, but it quite accurately depicts the mass sociology. This is how we react to startling new facts.

For quotation purists, I’m not sure exactly what the original phrasing was. I have paraphrased it to be succinct and have substituted orthodoxy for religion, because even scientists can have orthodoxies: holy cows that must not be slaughtered.

I might even add a precursor stage zero to the list above:

0. It goes unrecognized.

This is to say, that if a new fact is sufficiently startling, we don’t just disbelieve it (stage 1); at first we fail to see it at all. We lack the cognitive framework to even recognize how important it is. An example is provided by the 1941 detection of the microwave background by Andrew McKellar. In retrospect, this is as persuasive as the 1964 detection of Penzias and Wilson to which we usually ascribe the discovery. At the earlier time, there was simply no framework for recognizing what it was that was being detected. It appears to me that P&Z didn’t know what they were looking at either until Peebles explained it to them.

The radial acceleration relation was first posed as the mass discrepancy-acceleration relation. They’re fundamentally the same thing, just plotted in a slightly different way. The mass discrepancy-acceleration relation shows the ratio of total mass to that which is visible. This is basically the ratio of the observed acceleration to that predicted by the observed baryons. This is useful to see how much dark matter is needed, but by construction the axes are not independent, as both measured quantities are used in forming the ratio.

The radial acceleration relation shows independent observations along each axis: observed vs. predicted acceleration. Though measured independently, they are not physically independent, as the baryons contribute some to the total observed acceleration – they do have mass, after all. One can construct a halo acceleration relation by subtracting the baryonic contribution away from the total; in principle the remainders are physically independent. Unfortunately, the axes again become observationally codependent, and the uncertainties blow up, especially in the baryon dominated regime. Which of these depictions is preferable depends a bit on what you’re looking to see; here I just want to note that they are the same information packaged somewhat differently.

To the best of my knowledge, the first mention of the mass discrepancy-acceleration relation in the scientific literature is by Sanders (1990). Its existence is explicit in MOND (Milgrom 1983), but here it is possible to draw a clear line between theory and data. I am only speaking of the empirical relation as it appears in the data, irrespective of anything specific to MOND.

I met Bob Sanders, along with many other talented scientists, in a series of visits to the University of Groningen in the early 1990s. Despite knowing him and having talked to him about rotation curves, I was unaware that he had done this.

Stage 0: It goes unrecognized.

For me, stage one came later in the decade at the culmination of a several years’ campaign to examine the viability of the dark matter paradigm from every available perspective. That’s a long paper, which nevertheless drew considerable praise from many people who actually read it. If you go to the bother of reading it today, you will see the outlines of many issues that are still debated and others that have been forgotten (e.g., the fine-tuning issues).

Around this time (1998), the dynamicists at Rutgers were organizing a meeting on galaxy dynamics, and asked me to be one of the speakers. I couldn’t possibly discuss everything in the paper in the time allotted, so was looking for a way to show the essence of the challenge the data posed. Consequently, I reinvented the wheel, coming up with the mass discrepancy-acceleration relation. Here I show the same data that I had then in the form of the radial acceleration relation:

The Radial Acceleration Relation from the data in McGaugh (1999). Plot credit: Federico Lelli. (There is a time delay in publication: the 1998 meeting’s proceedings appeared in 1999.)

I recognize this version of the plot as having been made by Federico Lelli. I’ve made this plot many times, but this is version I came across first, and it is better than mine in that the opacity of the points illustrates where the data are concentrated. I had been working on low surface brightness galaxies; these have low accelerations, so that part of the plot is well populated.

The data show a clear correlation. By today’s standards, it looks crude. Going on what we had then, it was fantastic. Correlations practically never look this good in extragalactic astronomy, and they certainly don’t happen by accident. Low quality data can hide a correlation – uncertainties cause scatter – but they can’t create a correlation where one doesn’t exist.

This result was certainly startling if not as new as I then thought. That’s why I used the title How Galaxies Don’t Form. This was contrary to our expectations, as I had explained in exhaustive detail in the long paper and revisit in a recent review for philosophers and historians of science.

I showed the same result later that year (1998) at a meeting on the campus of the University of Maryland where I was a brand new faculty member. It was a much shorter presentation, so I didn’t have time to justify the context or explain much about the data. Contrary to the reception at Rutgers where I had adequate time to speak, the hostility of the audience to the result was palpable, their stony silence eloquent. They didn’t want to believe it, and plenty of people got busy questioning the data.

Stage 1: It is not true.

I spent the next five years expanding and improving the data. More rotation curves became available thanks to the work of many, particularly Erwin de Blok, Marc Verheijen, and Rob Swaters. That was great, but the more serious limitation was how well we could measure the stellar mass distribution needed to predict the baryonic acceleration.

The mass models we could build at the time were based on optical images. A mass model takes the observed light distribution, assigns a mass-to-light ratio, and makes a numerical solution of the Poisson equation to obtain the the gravitational force corresponding to the observed stellar mass distribution. This is how we obtain the stellar contribution to the predicted baryonic force; the same procedure is applied to the observed gas distribution. The blue part of the spectrum is the best place in which to observe low contrast, low surface brightness galaxies as the night sky is darkest there, at least during new moon. That’s great for measuring the light distribution, but what we want is the stellar mass distribution. The mass-to-light ratio is expected to have a lot of scatter in the blue band simply from the happenstance of recent star formation, which makes bright blue stars that are short-lived. If there is a stochastic uptick in the star formation rate, then the mass-to-light ratio goes down because there are lots of bright stars. Wait a few hundred million years and these die off, so the mass-to-light ratio gets bigger (in the absence of further new star formation). The time-integrated stellar mass may not change much, but the amount of blue light it produces does. Consequently, we expect to see well-observed galaxies trace distinct lines in the radial acceleration plane, even if there is a single universal relation underlying the phenomenon. This happens simply because we expect to get M*/L wrong from one galaxy to the next: in 1998, I had simply assumed all galaxies had the same M*/L for lack of any better prescription. Clearly, a better prescription was warranted.

In those days, I traveled through Tucson to observe at Kitt Peak with some frequency. On one occasion, I found myself with a few hours to kill between coming down from the mountain and heading to the airport. I wandered over to the Steward Observatory at the University of Arizona to see who I might see. A chance meeting in the wild west: I encountered Eric Bell and Roelof de Jong, who were postdocs there at the time. I knew Eric from his work on the stellar populations of low surface brightness galaxies, an interest closely aligned with my own, and Roelof from my visits to Groningen.

As we got to talking, Eric described to me work they were doing on stellar populations, and how they thought it would be possible to break the age-metallicity degeneracy using near-IR colors in addition to optical colors. They were mostly focused on improving the age constraints on stars in LSB galaxies, but as I listened, I realized they had constructed a more general, more powerful tool. At my encouragement (read their acknowledgements), they took on this more general task, ultimately publishing the classic Bell & de Jong (2001). In it, they built a table that enabled one to look up the expected mass-to-light ratio of a complex stellar population – one actively forming stars – as a function of color. This was a big step forward over my educated guess of a constant mass-to-light ratio: there was now a way to use a readily observed property, color, to improve the estimated M*/L of each galaxy in a well-calibrated way.

Combining the new stellar population models with all the rotation curves then available, I obtained an improved mass discrepancy-acceleration relation:

The Radial Acceleration Relation from the data in McGaugh (2004); version using Bell’s stellar population synthesis models to estimate M*/L (see Fig. 5 for other versions). Plot credit: Federico Lelli.

Again, the relation is clear, but with scatter. Even with the improved models of Bell & de Jong, some individual galaxies have M*/L that are wrong – that’s inevitable in this game. What you cannot know is which ones! Note, however, that there are now 74 galaxies in this plot, and almost all of them fall on top of each other where the point density is large. There are some obvious outliers; those are presumably just that: the trees that fall outside the forest because of the expected scatter in M*/L estimates.

I tried a variety of prescriptions for M*/L in addition to that of Bell & de Jong. Though they differed in texture, they all told a consistent story. A relation was clearly present; only its detailed form varied with the adopted prescription.

The prescription that minimized the scatter in the relation was the M*/L obtained in MOND fits. That’s a tautology: by construction, a MOND fit finds the M*/L that puts a galaxy on this relation. However, we can generalize the result. Maybe MOND is just a weird, unexpected way of picking a number that has this property; it doesn’t have to be the true mass-to-light ratio in nature. But one can then define a ratio Q

Equation 21 of McGaugh (2004).

that relates the “true” mass-to-light ratio to the number that gives a MOND fit. They don’t have to be identical, but MOND does return M*/L that are reasonable in terms of stellar populations, so Q ~ 1. Individual values could vary, and the mean could be a bit more or less than unity, but not radically different. One thing that impressed me at the time about the MOND fits (most of which were made by Bob Sanders) was how well they agreed with the stellar population models, recovering the correct amplitude, the correct dependence on color in different bandpasses, and also giving the expected amount of scatter (more in the blue than in the near-IR).

Fig. 7 of McGaugh (2004). Stellar mass-to-light ratios of galaxies in the blue B-band (top) and near-IR K-band (bottom) as a function of BV color for the prescription of maximum disk (left) and MOND (right). Each point represents one galaxy for which the requisite data were available at the time. The line represents the mean expectation of stellar population synthesis models from Bell et al. (2003). These lines are completely independent of the data: neither the normalization nor the slope has been fit to the dynamical data. The red points are due to Sanders & Verheijen (1998); note the weak dependence of M*/L on color in the near-IR.

The obvious interpretation is that we should take seriously a theory that obtains good fits with a single free parameter that checks out admirably well with independent astrophysical constraints, in this case the M*/L expected for stellar populations. But I knew many people would not want to do that, so I defined Q to generalize to any M*/L in any (dark matter) context one might want to consider.

Indeed, Q allows us to write a general expression for the rotation curve of the dark matter halo (essentially the HAR alluded to above) in terms of that of the stars and gas:

Equation 22 of McGaugh (2004).

The stars and the gas are observed, and μ is the MOND interpolation function assumed in the fit that leads to Q. Except now the interpolation function isn’t part of some funny new theory; it is just the shape of the radial acceleration relation – a relation that is there empirically. The only fit factor between these data and any given model is Q – a single number of order unity. This does leave some wiggle room, but not much.

I went off to a conference to describe this result. At the 2006 meeting Galaxies in the Cosmic Web in New Mexico, I went out of my way at the beginning of the talk to show that even if we ignore MOND, this relation is present in the data, and it provides a strong constraint on the required distribution of dark matter. We may not know why this relation happens, but we can use it, modulo only the modest uncertainty in Q.

Having bent over backwards to distinguish the data from the theory, I was disappointed when, immediately at the end of my talk, prominent galaxy formation theorist Anatoly Klypin loudly shouted

“We don’t have to explain MOND!”

It stinks of MOND!

But you do have to explain the data. The problem was and is that the data look like MOND. It is easy to conflate one with the other; I have noticed that a lot of people have trouble keeping the two separate. Just because you don’t like the theory doesn’t mean that the data are wrong. What Anatoly was saying was that

2. It is contrary to orthodoxy.

Despite phrasing the result in a way that would be useful to galaxy formation theorists, they did not, by and large, claim to explain it at the time – it was contrary to orthodoxy so didn’t need to be explained. Looking at the list of papers that cite this result, the early adopters were not the target audience of galaxy formation theorists, but rather others citing it to say variations of “no way dark matter explains this.”

At this point, it was clear to me that further progress required a better way to measure the stellar mass distribution. Looking at the stellar population models, the best hope was to build mass models from near-infrared rather than optical data. The near-IR is dominated by old stars, especially red giants. Galaxies that have been forming stars actively for a Hubble time tend towards a quasi-equilibrium in which red giants are replenished by stellar evolution at about the same rate they move on to the next phase. One therefore expects the mass-to-light ratio to be more nearly constant in the near-IR. Not perfectly so, of course, but a 2 or 3 micron image is as close to a map of the stellar mass of a galaxy as we’re likely to get.

Around this time, the University of Maryland had begun a collaboration with Kitt Peak to build a big infrared camera, NEWFIRM, for the 4m telescope. Rob Swaters was hired to help write software to cope with the massive data flow it would produce. The instrument was divided into quadrants, each of which had a field of view sufficient to hold a typical galaxy. When it went on the telescope, we developed an efficient observing method that I called “four-shooter”, shuffling the target galaxy from quadrant to quadrant so that in processing we could remove the numerous instrumental artifacts intrinsic to its InSb detectors. This eventually became one of the standard observing modes in which the instrument was operated.

NEWFIRM in the lab in Tucson. Most of the volume is for cryogenics: the IR detectors are heliumcooled to 30 K. Partial student for scale.

I was optimistic that we could make rapid progress, and at first we did. But despite all the work, despite all the active cooling involved, we were still on the ground. The night sky was painfully bright in the IR. Indeed, the thermal component dominated, so we could observe during full moon. To an observer of low surface brightness galaxies attuned to any hint of scattered light from so much as a crescent moon, I cannot describe how discombobulating it was to walk outside the dome and see the full fricking moon. So bright. So wrong. And that wasn’t even the limiting factor: the thermal background was.

We had hit a surface brightness wall, again. We could do the bright galaxies this way, but the LSBs that sample the low acceleration end of the radial acceleration relation were rather less accessible. Not inaccessible, but there was a better way.

The Spitzer Space Telescope was active at this time. Jim Schombert and I started winning time to observe LSB galaxies with it. We discovered that space is dark. There was no atmosphere to contend with. No scattered light from the clouds or the moon or the OH lines that afflict that part of the sky spectrum. No ground-level warmth. The data were fantastic. In some sense, they were too good: the biggest headache we faced was blotting out all the background galaxies that shown right through the optically thin LSB galaxies.

Still, it took a long time to collect and analyze the data. We were starting to get results by the early-teens, but it seemed like it would take forever to get through everything I hoped to accomplish. Fortunately, when I moved to Case Western, I was able to hire Federico Lelli as a postdoc. Federico’s involvement made all the difference. After many months of hard, diligent, and exacting work, he constructed what is now the SPARC database. Finally all the elements were in place to construct an empirical radial acceleration relation with absolutely minimal assumptions about the stellar mass-to-light ratio.

In parallel with the observational work, Jim Schombert had been working hard to build realistic stellar population models that extended to the 3.6 micron band of Spitzer. Spitzer had been built to look redwards of this, further into the IR. 3.6 microns was its shortest wavelength passband. But most models at the time stopped at the K-band, the 2.2 micron band that is the reddest passband that is practically accessible from the ground. They contain pretty much the same information, but we still need to calculate the band-specific value of M*/L.

Being a thorough and careful person, Jim considered not just the star formation history of a model stellar population as a variable, and not just its average metallicity, but also the metallicity distribution of its stars, making sure that these were self-consistent with the star formation history. Realistic metallicity distributions are skewed; it turn out that this subtle effect tends to counterbalance the color dependence of the age effect on M*/L in the near-IR part of the spectrum. The net results is that we expect M*/L to be very nearly constant for all late type galaxies.

This is the best possible result. To a good approximation, we expected all of the galaxies in the SPARC sample to have the same mass-to-light ratio. What you see is what you get. No variable M*/L, no equivocation, just data in, result out.

We did still expect some scatter, as that is an irreducible fact of life in this business. But even that we expected to be small, between 0.1 and 0.15 dex (roughly 25 – 40%). Still, we expected the occasional outlier, galaxies that sit well off the main relation just because our nominal M*/L didn’t happen to apply in that case.

One day as I walked past Federico’s office, he called for me to come look at something. He had plotted all the data together assuming a single M*/L. There… were no outliers. The assumption of a constant M*/L in the near-IR didn’t just work, it worked far better than we had dared to hope. The relation leapt straight out of the data:

The Radial Acceleration Relation from the data in McGaugh et al. (2016). Plot credit: Federico Lelli.

Over 150 galaxies, with nearly 2700 resolved measurements within each galaxy, each with their own distinctive mass distribution, all pile on top of each other without effort. There was plenty of effort in building the database, but once it was there, the result appeared, no muss, no fuss. No fitting or fiddling. Just the measurements and our best estimate of the mean M*/L, applied uniformly to every individual galaxy in the sample. The scatter was only 0.12 dex, within the range expected from the population models.

No MOND was involved in the construction of this relation. It may look like MOND, but we neither use MOND nor need it in any way to see the relation. It is in the data. Perhaps this is the sort of result for which we would have to invent MOND if it did not already exist. But the dark matter paradigm is very flexible, and many papers have since appeared that claim to explain the radial acceleration relation. We have reached

3. We knew it all along.

On the one hand, this is good: the community is finally engaging with a startling fact that has been pointedly ignored for decades. On the other hand, many of the claims to explain the radial acceleration relation are transparently incorrect on their face, being nothing more than elaborations of models I considered and discarded as obviously unworkable long ago. They do not provide a satisfactory explanation of the predictive power of MOND, and inevitably fail to address important aspects of the problem, like disk stability. Rather than grapple with the deep issues the new and startling fact poses, it has become fashionable to simply assert that one’s favorite model explains the radial acceleration relation, and does so naturally.

There is nothing natural about the radial acceleration relation in the context of dark matter. Indeed, it is difficult to imagine a less natural result – hence stages one and two. So on the one hand, I welcome the belated engagement, and am willing to consider serious models. On the other hand, if someone asserts that this is natural and that we expected it all along, then the engagement isn’t genuine: they’re just fooling themselves.

Early Days. This was one of Vera Rubin’s favorite expressions. I always had a hard time with it, as many things are very well established. Yet it seems that we have yet to wrap our heads around the problem. Vera’s daughter, Judy Young, once likened the situation to the parable of the blind men and the elephant. Much is known, yes, but the problem is so vast that each of us can perceive only a part of the whole, and the whole may be quite different from the part that is right before us.

So I guess Vera is right as always: these remain Early Days.

The curious case of AGC 114905: an isolated galaxy devoid of dark matter?

The curious case of AGC 114905: an isolated galaxy devoid of dark matter?

It’s early in the new year, so what better time to violate my own resolutions? I prefer to be forward-looking and not argue over petty details, or chase wayward butterflies. But sometimes the devil is in the details, and the occasional butterfly can be entertaining if distracting. Today’s butterfly is the galaxy AGC 114905, which has recently been in the news.

There are a couple of bandwagons here: one to rebrand very low surface brightness galaxies as ultradiffuse, and another to get overly excited when these types of galaxies appear to lack dark matter. The nomenclature is terrible, but that’s normal for astronomy so I would overlook it, except that in this case it gives the impression that there is some new population of galaxies behaving in an unexpected fashion, when instead it looks to me like the opposite is the case. The extent to which there are galaxies lacking dark matter is fundamental to our interpretation of the acceleration discrepancy (aka the missing mass problem), so bears closer scrutiny. The evidence for galaxies devoid of dark matter is considerably weaker than the current bandwagon portrays.

If it were just one butterfly (e.g., NGC 1052-DF2), I wouldn’t bother. Indeed, it was that specific case that made me resolve to ignore such distractions as a waste of time. I’ve seen this movie literally hundreds of times, I know how it goes:

  • Observations of this one galaxy falsify MOND!
  • Hmm, doing the calculation right, that’s what MOND predicts.
  • OK, but better data shrink the error bars and now MOND falsified.
  • Are you sure about…?
  • Yes. We like this answer, let’s stop thinking about it now.
  • As the data continue to improve, it approaches what MOND predicts.
  • <crickets>

Over and over again. DF44 is another example that has followed this trajectory, and there are many others. This common story is not widely known – people lose interest once they get the answer they want. Irrespective of whether we can explain this weird case or that, there is a deeper story here about data analysis and interpretation that seems not to be widely appreciated.

My own experience inevitably colors my attitude about this, as it does for us all, so let’s start thirty years ago when I was writing a dissertation on low surface brightness (LSB) galaxies. I did many things in my thesis, most of them well. One of the things I tried to do then was derive rotation curves for some LSB galaxies. This was not the main point of the thesis, and arose almost as an afterthought. It was also not successful, and I did not publish the results because I didn’t believe them. It wasn’t until a few years later, with improved data, analysis software, and the concerted efforts of Erwin de Blok, that we started to get a handle on things.

The thing that really bugged me at the time was not the Doppler measurements, but the inclinations. One has to correct the observed velocities by the inclination of the disk, 1/sin(i). The inclination can be constrained by the shape of the image and by the variation of velocities across the face of the disk. LSB galaxies presented raggedy images and messy velocity fields. I found it nigh on impossible to constrain their inclinations at the time, and it remains a frequent struggle to this day.

Here is an example of the LSB galaxy F577-V1 that I find lurking around on disk from all those years ago:

The LSB galaxy F577-V1 (B-band image, left) and the run of the eccentricity of ellipses fit to the atomic gas data (right).

A uniform disk projected on the sky at some inclination will have a fixed corresponding eccentricity, with zero being the limit of a circular disk seen perfectly face-on (i = 0). Do you see a constant value of the eccentricity in the graph above? If you say yes, go get your eyes checked.

What we see in this case is a big transition from a fairly eccentric disk to one that is more nearly face on. The inclination doesn’t have a sudden warp; the problem is that the assumption of a uniform disk is invalid. This galaxy has a bar – a quasi-linear feature that is common in many spiral galaxies that is supported by non-circular orbits. Even face-on, the bar will look elongated simply because it is. Indeed, the sudden change in eccentricity is one way to define the end of the bar, which the human eye-brain can do easily by looking at the image. So in a case like this, one might adopt the inclination from the outer points, and that might even be correct. But note that there are spiral arms along the outer edge that is visible to the eye, so it isn’t clear that even these isophotes are representative of the shape of the underlying disk. Worse, we don’t know what happens beyond the edge of the data; the shape might settle down at some other level that we can’t see.

This was so frustrating, I swore never to have anything to do with galaxy kinematics ever again. Over 50 papers on the subject later, all I can say is D’oh! Repeatedly.

Bars are rare in LSB galaxies, but it struck me as odd that we saw any at all. We discovered unexpectedly that they were dark matter dominated – the inferred dark halo outweighs the disk, even within the edge defined by the stars – but that meant that the disks should be stable against the formation of bars. My colleague Chris Mihos agreed, and decided to look into it. The answer was yes, LSB galaxies should be stable against bar formation, at least internally generated bars. Sometimes bars are driven by external perturbations, so we decided to simulate the close passage of a galaxy of similar mass – basically, whack it real hard and see what happens:

Simulation of an LSB galaxy during a strong tidal encounter with another galaxy. Closest approach is at t=24 in simulation units (between the first and second box). A linear bar does not form, but the model galaxy does suffer a strong and persistent oval distortion: all these images are shown face-on (i=0). From Mihos et al (1997).

This was a conventional simulation, with a dark matter halo constructed to be consistent with the observed properties of the LSB galaxy UGC 128. The results are not specific to this case; it merely provides numerical corroboration of the more general case that we showed analytically.

Consider the image above in the context of determining galaxy inclinations from isophotal shapes. We know this object is face-on because we can control our viewing angle in the simulation. However, we would not infer i=0 from this image. If we didn’t know it had been perturbed, we would happily infer a substantial inclination – in this case, easily as much as 60 degrees! This is an intentionally extreme case, but it illustrates how a small departure from a purely circular shape can be misinterpreted as an inclination. This is a systematic error, and one that usually makes the inclination larger than it is: it is possible to appear oval when face-on, but it is not possible to appear more face-on than perfectly circular.

Around the same time, Erwin and I were making fits to the LSB galaxy data – with both dark matter halos and MOND. By this point in my career, I had deeply internalized that the data for LSB galaxies were never perfect. So we sweated every detail, and worked through every “what if?” This was a particularly onerous task for the dark matter fits, which could do many different things if this or that were assumed – we discussed all the plausible possibilities at the time. (Subsequently, a rich literature sprang up discussing many unreasonable possibilities.) By comparison, the MOND fits were easy. They had fewer knobs, and in 2/3 of the cases they simply worked, no muss, no fuss.

For the other 1/3 of the cases, we noticed that the shape of the MOND-predicted rotation curves was usually right, but the amplitude was off. How could it work so often, and yet miss in this weird way? That sounded like a systematic error, and the inclination was the most obvious culprit, with 1/sin(i) making a big difference for small inclinations. So we decided to allow this as a fit parameter, to see whether a fit could be obtained, and judge how [un]reasonable this was. Here is an example for two galaxies:

UGC 1230 (left) and UGC 5005 (right). Ovals show the nominally measured inclination (i=22o for UGC 1230 and 41o for UGC 5005, respectively) and the MOND best-fit value (i=17o and 30o). From de Blok & McGaugh (1998).

The case of UGC 1230 is memorable to me because it had a good rotation curve, despite being more face-on than widely considered acceptable for analysis. And for good reason: the difference between 22 and 17 degrees make a huge difference to the fit, changing it from way off to picture perfect.

Rotation curve fits for UGC 1230 (top) and UGC 5005 (bottom) with the inclination fixed (left) and fit (right). From de Blok & McGaugh (1998).

What I took away from this exercise is how hard it is to tell the difference between inclination values for relatively face-on galaxies. UGC 1230 is obvious: the ovals for the two inclinations are practically on top of each other. The difference in the case of UGC 5005 is more pronounced, but look at the galaxy. The shape of the outer isophote where we’re trying to measure this is raggedy as all get out; this is par for the course for LSB galaxies. Worse, look further in – this galaxy has a bar! The central bar is almost orthogonal to the kinematic major axis. If we hadn’t observed as deeply as we had, we’d think the minor axis was the major axis, and the inclination was something even higher.

I remember Erwin quipping that he should write a paper on how to use MOND to determine inclinations. This was a joke between us, but only half so: using the procedure in this way would be analogous to using Tully-Fisher to measure distances. We would simply be applying an empirically established procedure to constrain a property of a galaxy – luminosity from line-width in that case of Tully-Fisher; inclination from rotation curve shape here. That we don’t understand why this works has never stopped astronomers before.

Systematic errors in inclination happen all the time. Big surveys don’t have time to image deeply – they have too much sky area to cover – and if there is follow-up about the gas content, it inevitably comes in the form of a single dish HI measurement. This is fine; it is what we can do en masse. But an unresolved single dish measurement provides no information about the inclination, only a pre-inclination line-width (which itself is a crude proxy for the flat rotation speed). The inclination we have to take from the optical image, which would key on the easily detected, high surface brightness central region of the image. That’s the part that is most likely to show a bar-like distortion, so one can expect lots of systematic errors in the inclinations determined in this way. I provided a long yet still incomplete discussion of these issues in McGaugh (2012). This is both technical and intensely boring, so not even the pros read it.

This brings us to the case of AGC 114905, which is part of a sample of ultradiffuse galaxies discussed previously by some of the same authors. On that occasion, I kept to the code, and refrained from discussion. But for context, here are those data on a recent Baryonic Tully-Fisher plot. Spoiler alert: that post was about a different sample of galaxies that seemed to be off the relation but weren’t.

Baryonic Tully-Fisher relation showing the ultradiffuse galaxies discussed by Mancera Piña et al. (2019) as gray circles. These are all outliers from the relation; AGC 114905 is highlighted in orange. Placing much meaning in the outliers is a classic case of missing the forest for the trees. The outliers are trees. The Tully-Fisher relation is the forest.

On the face of it, these ultradiffuse galaxies (UDGs) are all very serious outliers. This is weird – they’re not some scatter off to one side, they’re just way off on their own island, with no apparent connection to the rest of established reality. By calling them a new name, UDG, it makes it sound plausible that these are some entirely novel population of galaxies that behave in a new way. But they’re not. They are exactly the same kinds of galaxies I’ve been talking about. They’re all blue, gas rich, low surface brightness, fairly isolated galaxies – all words that I’ve frequently used to describe my thesis sample. These UDGs are all a few billion solar mass is baryonic mass, very similar to F577-V1 above. You could give F577-V1 a different name, slip into the sample, and nobody would notice that it wasn’t like one of the others.

The one slight difference is implied by the name: UDGs are a little lower in surface brightness. Indeed, once filter transformations are taken into account, the definition of ultradiffuse is equal to what I arbitrarily called very low surface brightness in 1996. Most of my old LSB sample galaxies have central stellar surface brightnesses at or a bit above 10 solar masses per square parsec while the UDGs here are a bit under this threshold. For comparison, in typical high surface brightness galaxies this quantity is many hundreds, often around a thousand. Nothing magic happens at the threshold of 10 solar masses per square parsec, so this line of definition between LSB and UDG is an observational distinction without a physical difference. So what are the odds of a different result for the same kind of galaxies?

Indeed, what really matters is the baryonic surface density, not just the stellar surface brightness. A galaxy made purely of gas but no stars would have zero optical surface brightness. I don’t know of any examples of that extreme, but we came close to it with the gas rich sample of Trachternach et al. (2009) when we tried this exact same exercise a decade ago. Despite selecting that sample to maximize the chance of deviations from the Baryonic Tully-Fisher relation, we found none – at least none that were credible: there were deviant cases, but their data were terrible. There were no deviants among the better data. This sample is comparable or even extreme than the UDGs in terms of baryonic surface density, so the UDGs can’t be exception because they’re a genuinely new population, whatever name we call them by.

The key thing is the credibility of the data, so let’s consider the data for AGC 114905. The kinematics are pretty well ordered; the velocity field is well observed for this kind of beast. It ought to be; they invested over 40 hours of JVLA time into this one galaxy. That’s more than went into my entire LSB thesis sample. The authors are all capable, competent people. I don’t think they’ve done anything wrong, per se. But they do seem to have climbed aboard the bandwagon of dark matter-free UDGs, and have talked themselves into believing smaller error bars on the inclination than I am persuaded is warranted.

Here is the picture of AGC 114905 from Mancera Piña et al. (2021):

AGC 114905 in stars (left) and gas (right). The contours of the gas distribution are shown on top of the stars in white. Figure 1 from Mancera Piña et al. (2021).

This messy morphology is typical of very low surface brightness galaxies – hence their frequent classification as Irregular galaxies. Though messier, it shares some morphological traits with the LSB galaxies shown above. The central light distribution is elongated with a major axis that is not aligned with that of the gas. The gas is raggedy as all get out. The contours are somewhat boxy; this is a hint that something hinky is going on beyond circular motion in a tilted axisymmetric disk.

The authors do the right thing and worry about the inclination, checking to see what it would take to be consistent with either LCDM or MOND, which is about i=11o in stead of the 30o indicated by the shape of the outer isophote. They even build a model to check the plausibility of the smaller inclination:

Contours of models of disks with different inclinations (lines, as labeled) compared to the outer contour of the gas distribution of AGC 114905. Figure 7 from Mancera Piña et al. (2021).

Clearly the black line (i=30o) is a better fit to the shape of the gas distribution than the blue dashed line (i=11o). Consequently, they “find it unlikely that we are severely overestimating the inclination of our UDG, although this remains the largest source of uncertainty in our analysis.” I certainly agree with the latter phrase, but not the former. I think it is quite likely that they are overestimating the inclination. I wouldn’t even call it a severe overestimation; more like par for the course with this kind of object.

As I have emphasized above and elsewhere, there are many things that can go wrong in this sort of analysis. But if I were to try to put my finger on the most important thing, here it would be the inclination. The modeling exercise is good, but it assumes “razor-thin axisymmetric discs.” That’s a reasonable thing to do when building such a model, but we have to bear in mind that real disks are neither. The thickness of the disk probably doesn’t matter too much for a nearly face-on case like this, but the assumption of axisymmetry is extraordinarily dubious for an Irregular galaxy. That’s how they got the name.

It is hard to build models that are not axisymmetric. Once you drop this simplifying assumption, where do you even start? So I don’t fault them for stopping at this juncture, but I can also imagine doing as de Blok suggested, using MOND to set the inclination. Then one could build models with asymmetric features by trial and error until a match is obtained. Would we know that such a model would be a better representation of reality? No. Could we exclude such a model? Also no. So the bottom line is that I am not convinced that the uncertainty in the inclination is anywhere near as small as the adopted ±3o.

That’s very deep in the devilish details. If one is worried about a particular result, one can back off and ask if it makes sense in the context of what we already know. I’ve illustrated this process previously. First, check the empirical facts. Every other galaxy in the universe with credible data falls on the Baryonic Tully-Fisher relation, including very similar galaxies that go by a slightly different name. Hmm, strike one. Second, check what we expect from theory. I’m not a fan of theory-informed data interpretation, but we know that LCDM, unlike SCDM before it, at least gets the amplitude of the rotation speed in the right ballpark (Vflat ~ V200). Except here. Strike two. As much as we might favor LCDM as the standard cosmology, it has now been extraordinarily well established that MOND has considerable success in not just explaining but predicting these kind of data, with literally hundreds of examples. One hundred was the threshold Vera Rubin obtained to refute excuses made to explain away the first few flat rotation curves. We’ve crossed that threshold: MOND phenomenology is as well established now as flat rotation curves were at the inception of the dark matter paradigm. So while I’m open to alternative explanations for the MOND phenomenology, seeing that a few trees stand out from the forest is never going to be as important as the forest itself.

The Baryonic Tully-Fisher relation exists empirically; we have to explain it in any theory. Either we explain it, or we don’t. We can’t have it both ways, just conveniently throwing away our explanation to accommodate any discrepant observation that comes along. That’s what we’d have to do here: if we can explain the relation, we can’t very well explain the outliers. If we explain the outliers, it trashes our explanation for the relation. If some galaxies are genuine exceptions, then there are probably exceptional reasons for them to be exceptions, like a departure from equilibrium. That can happen in any theory, rendering such a test moot: a basic tenet of objectivity is that we don’t get to blame a missed prediction of LCDM on departures from equilibrium without considering the same possibility for MOND.

This brings us to a physical effect that people should be aware of. We touched on the bar stability above, and how a galaxy might look oval even when seen face on. This happens fairly naturally in MOND simulations of isolated disk galaxies. They form bars and spirals and their outer parts wobble about. See, for example, this simulation by Nils Wittenburg. This particular example is a relatively massive galaxy; the lopsidedness reminds me of M101 (Watkins et al. 2017). Lower mass galaxies deeper in the MOND regime are likely even more wobbly. This happens because disks are only marginally stable in MOND, not the over-stabilized entities that have to be hammered to show a response as in our early simulation of UGC 128 above. The point is that there is good reason to expect even isolated face-on dwarf Irregulars to look, well, irregular, leading to exactly the issues with inclination determinations discussed above. Rather than being a contradiction to MOND, AGC 114905 may illustrate one of its inevitable consequences.

I don’t like to bicker at this level of detail, but it makes a profound difference to the interpretation. I do think we should be skeptical of results that contradict well established observational reality – especially when over-hyped. God knows I was skeptical of our own results, which initially surprised the bejeepers out of me, but have been repeatedly corroborated by subsequent observations.

I guess I’m old now, so I wonder how I come across to younger practitioners; perhaps as some scary undead monster. But mates, these claims about UDGs deviating from established scaling relations are off the edge of the map.

Super spirals on the Tully-Fisher relation

Super spirals on the Tully-Fisher relation

A surprising and ultimately career-altering result that I encountered while in my first postdoc was that low surface brightness galaxies fell precisely on the Tully-Fisher relation. This surprising result led me to test the limits of the relation in every conceivable way. Are there galaxies that fall off it? How far is it applicable? Often, that has meant pushing the boundaries of known galaxies to ever lower surface brightness, higher gas fraction, and lower mass where galaxies are hard to find because of unavoidable selection biases in galaxy surveys: dim galaxies are hard to see.

I made a summary plot in 2017 to illustrate what we had learned to that point. There is a clear break in the stellar mass Tully-Fisher relation (left panel) that results from neglecting the mass of interstellar gas that becomes increasingly important in lower mass galaxies. The break goes away when you add in the gas mass (right panel). The relation between baryonic mass and rotation speed is continuous down to Leo P, a tiny galaxy just outside the Local Group comparable in mass to a globular cluster and the current record holder for the slowest known rotating galaxy at a mere 15 km/s.

The stellar mass (left) and baryonic (right) Tully-Fisher relations constructed in 2017 from SPARC data and gas rich galaxies. Dark blue points are star dominated galaxies; light blue points are galaxies with more mass in gas than in stars. The data are restricted to galaxies with distance measurements accurate to 20% or better; see McGaugh et al. (2019) for a discussion of the effects of different quality criteria. The line has a slope of 4 and is identical in both panels for comparison.

At the high mass end, galaxies aren’t hard to see, but they do become progressively rare: there is an exponential cut off in the intrinsic numbers of galaxies at the high mass end. So it is interesting to see how far up in mass we can go. Ogle et al. set out to do that, looking over a huge volume to identify a number of very massive galaxies, including what they dubbed “super spirals.” These extend the Tully-Fisher relation to higher masses.

The Tully-Fisher relation extended to very massive “super” spirals (blue points) by Ogle et al. (2019).

Most of the super spirals lie on the top end of the Tully-Fisher relation. However, a half dozen of the most massive cases fall off to the right. Could this be a break in the relation? So it was claimed at the time, but looking at the data, I wasn’t convinced. It looked to me like they were not always getting out to the flat part of the rotation curve, instead measuring the maximum rotation speed.

Bright galaxies tend to have rapidly rising rotation curves that peak early then fall before flattening out. For very bright galaxies – and super spirals are by definition the brightest spirals – the amplitude of the decline can be substantial, several tens of km/s. So if one measures the maximum speed instead of the flat portion of the curve, points will fall to the right of the relation. I decided not to lose any sleep over it, and wait for better data.

Better data have now been provided by Di Teodoro et al. Here is an example from their paper. The morphology of the rotation curve is typical of what we see in massive spiral galaxies. The maximum rotation speed exceeds 300 km/s, but falls to 275 km/s where it flattens out.

A super spiral (left) and its rotation curve (right) from Di Teodoro et al.

Adding the updated data to the plot, we see that the super spirals now fall on the Tully-Fisher relation, with no hint of a break. There are a couple of outliers, but those are trees. The relation is the forest.

The super spiral (red points) stellar mass (left) and baryonic (right) Tully-Fisher relations as updated by Di Teodoro et al. (2021).

That’s a good plot, but it stops at 108 solar masses, so I couldn’t resist adding the super spirals to my plot from 2017. I’ve also included the dwarfs I discussed in the last post. Together, we see that the baryonic Tully-Fisher relation is continuous over six decades in mass – a factor of million from the smallest to the largest galaxies.

The plot from above updated to include the super spirals (red points) at high mass and Local Group dwarfs (gray squares) at low mass. The SPARC data (blue points) have also been updated with new stellar population mass-to-light ratio estimates that make their bulge components a bit more massive, and with scaling relations for metallicity and molecular gas. The super spirals have been treated in the same way, and adjusted to a matching distance scale (H0 = 73 km/s/Mpc). There is some overlap between the super spirals and the most massive galaxies in SPARC; here the data are in excellent agreement. The super spirals extend to higher mass by a factor of two.

The strength of this correlation continues to amaze me. This never happens in extragalactic astronomy, where correlations are typically weak and have lots of intrinsic scatter. The opposite is true here. This must be telling us something.

The obvious thing that this is telling us is MOND. The initial report that super spirals fell off of the Tully-Fisher relation was widely hailed as a disproof of MOND. I’ve seen this movie many times, so I am not surprised that the answer changed in this fashion. It happens over and over again. Even less surprising is that there is no retraction, no self-examination of whether maybe we jumped to the wrong conclusion.

I get it. I couldn’t believe it myself, to start. I struggled for many years to explain the data conventionally in terms of dark matter. Worked my ass off trying to save the paradigm. Try as I might, nothing worked. Since then, many people have claimed to explain what I could not, but so far all I have seen are variations on models that I had already rejected as obviously unworkable. They either make unsubstantiated assumptions, building a tautology, or simply claim more than they demonstrate. As long as you say what people want to hear, you will be held to a very low standard. If you say what they don’t want to hear, what they are conditioned not to believe, then no standard of proof is high enough.

MOND was the only theory to predict the observed behavior a priori. There are no free parameters in the plots above. We measure the mass and the rotation speed. The data fall on the predicted line. Dark matter models did not predict this, and can at best hope to provide a convoluted, retroactive explanation. Why should I be impressed by that?

Leveling the Playing Field of Dwarf Galaxy Kinematics

Leveling the Playing Field of Dwarf Galaxy Kinematics

We have a new paper on the arXiv. This is a straightforward empiricist’s paper that provides a reality check on the calibration of the Baryonic Tully-Fisher relation (BTFR) and the distance scale using well-known Local Group galaxies. It also connects observable velocity measures in rotating and pressure supported dwarf galaxies: the flat rotation speed of disks is basically twice the line-of-sight velocity dispersion of dwarf spheroidals.

First, the reality check. Previously we calibrated the BTFR using galaxies with distances measured by reliable methods like Cepheids and the Tip of the Red Giant Branch (TRGB) method. Application of this calibration obtains the Hubble constant H0 = 75.1 +/- 2.3 km/s/Mpc, which is consistent with other local measurements but in tension with the value obtained from fitting the Planck CMB data. All of the calibrator galaxies are nearby (most are within 10 Mpc, which is close by extragalactic standards), but none of them are in the Local Group (galaxies within ~1 Mpc like Andromeda and M33). The distances to Local Group galaxies are pretty well known at this point, so if we got the BTFR calibration right, they had better fall right on it.

They do. From high to low mass, the circles in the plot below are Andromeda, the Milky Way, M33, the LMC, SMC, and NGC 6822. All fall on the externally calibrated BTFR, which extrapolates well to still lower mass dwarf galaxies like WLM, DDO 210, and DDO 216 (and even Leo P, the smallest rotating galaxy known).

The BTFR for Local Group galaxies. Rotationally supported galaxies with measured flat rotation velocities (circles) are in good agreement with the BTFR calibrated independently with fifty galaxies external to the Local Group (solid line; the dashed line is the extrapolation below the lowest mass calibrator). Pressure supported dwarfs (squares) are plotted with their observed velocity dispersions in lieu of a flat rotation speed. Filled squares are color coded by their proximity to M31 (red) or the Milky Way (orange) or neither (green). Open squares are dwarfs whose velocity dispersions may not be reliable tracers of their equilibrium gravitational potential (see McGaugh & Wolf).

The agreement of the BTFR with Local Group rotators is so good that it is tempting to say that there is no way to reconcile this with a low Hubble constant of 67 km/s/kpc. Doing so would require all of these galaxies to be more distant by the factor 75/67 = 1.11. That doesn’t sound too bad, but applying it means that Andromeda would have to be 875 kpc distant rather than the 785 ± 25 adopted by the source of our M31 data, Chemin et al. There is a long history of distance measurements to M31 so many opinions can be found, but it isn’t just M31 – all of the Local Group galaxy distances would have to be off by this factor. This seems unlikely to the point of absurdity, but as colleague and collaborator Jim Schombert reminds me, we’ve seen such things before with the distance scale.

So that’s the reality check: the BTFR works as it should in the Local Group – at least for the rotating galaxies (circles in the plot above). What about the pressure supported galaxies (the squares)?

Galaxies come in two basic kinematic types: rotating disks or pressure supported ellipticals. Disks are generally thin, with most of the stars orbiting in the same direction in the same plane on nearly circular orbits. Ellipticals are quasi-spherical blobs of stars on rather eccentric orbits oriented all over the place. This is an oversimplification, of course; real galaxies have a mix of orbits, but usually most of the kinetic energy is invested in one or the other, rotation or random motions. We can measure the speeds of stars and gas in these configurations, which provides information about the kinetic energy and corresponding gravitational binding energy. That’s how we get at the gravitational potential and infer the need for dark matter – or at least, the existence of acceleration discrepancies.

The elliptical galaxy M105 (left) and the spiral galaxy NGC 628 (right). Typical orbits are illustrated by the colored lines: predominantly radial (highly eccentric in & out) orbits in the pressure supported elliptical; more nearly circular (low eccentricity, round & round) orbits in rotationally supported disks. (Galaxy images are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain as part of the Palomar Observatory Sky Survey-II. Digital versions of the scanned photographic plates were obtained for reproduction from the Digitized Sky Survey.)

We would like to have full 6D phase space information for all stars – their location in 3D configuration space and their momentum in each direction. In practice, usually all we can measure is the Doppler line-of-sight speed. For rotating galaxies, we can [attempt to] correct the observed velocity for the inclination of the disk, and get an idea or the in-plane rotation speed. For ellipticals, we get the velocity dispersion along the line of sight in whatever orientation we happen to get. If the orbits are isotropic, then one direction of view is as good as any other. In general that need not be the case, but it is hard to constrain the anisotropy of orbits, so usually we assume isotropy and call it Close Enough for Astronomy.

For isotropic orbits, the velocity dispersion σ* is related to the circular velocity Vc of a test particle by Vc = √3 σ*. The square root of three appears because the kinetic energy of isotropic orbits is evenly divided among the three cardinal directions. These quantities depend in a straightforward way on the gravitational potential, which can be computed for the stuff we can see but not for that which we can’t. The stars tend to dominate the potential at small radii in bright galaxies. This is a complication we’ll ignore here by focusing on the outskirts of rotating galaxies where rotation curves are flat and dwarf spheroidals where stars never dominate. In both cases, we are in a limit where we can neglect the details of the stellar distribution: only the dark mass matters, or, in the case of MOND, only the total normal mass but not its detailed distribution (which does matter for the shape of a rotation curve, but not its flat amplitude).

Rather than worry about theory or the gory details of phase space, let’s just ask the data. How do we compare apples with apples? What is the factor βc that makes Vo = βc σ* an equality?

One notices that the data for pressure supported dwarfs nicely parallels that for rotating galaxies. We estimate βc by finding the shift that puts the dwarf spheroidals on the BTFR (on average). We only do this for the dwarfs that are not obviously affected by tidal effects whose velocity dispersions may not reflect the equilibrium gravitational potential. I have discussed this at great length in McGaugh & Wolf, so I refer the reader eager for more details there. Here I merely note that the exercise is meaningful only for those dwarfs that parallel the BTFR; it can’t apply to those that don’t regardless of the reason.

That caveat aside, this works quite well for βc = 2.

The BTFR plane with the outer velocity of dwarf spheroidals taken to be Vo = 2σ.

The numerically inclined reader will note that 2 > √3. One would expect the latter for isotropic orbits, which we implicitly average over by using the data for all these dwarfs together. So the likely explanation for the larger values of βc is that the outer velocities of rotation curves are measured at a larger radii than the velocity dispersions of dwarf spheroidals. The value of βc is accounts for the different effective radii of measurement as illustrated by the rotation curves below.

The rotation curve of the gas rich Local Group dIrr WLM (left, Iorio et al.) and the equivalent circular velocity curve of the pressure supported dSph Leo I (right). The filled point represents the luminosity weighted circular speed Vc = √3 σ* at the 3D half light radius where variation due to anisotropy is minimized (Wolf et al). The dotted lines illustrate how the uncertainty grows away from this point due to the compounding effects of anisotropy. The outer circular speed Vo is marked for both. Note that Vo > √3 σ* simply because of the shape of the circular velocity curve, which has not yet reached the flat plateau where the velocity dispersion is measured.

Once said, this seems obvious. The velocity dispersions of dwarf spheroidals are measured by observing the Doppler shifts of individual member stars. This measurement is necessarily made where the stars are. In contrast, the flat portions of rotation curves are traced by atomic gas at radii that typically extend beyond the edge of the optical disk. So we should expect a difference; βc = 2 quantifies it.

One small caveat is that in order to compare apples with apples, we have to adopt a mass-to-light ratio for the stars in dwarfs spheroidals in order to compare them with the combined mass of stars and gas in rotating galaxies. Indeed, the dwarf irregulars that overlap with the dwarf spheroidals in mass are made more of gas than stars, so there is always the risk of some systematic difference between the two mass scales. In the paper, we quantify the variation of βc with the choice of M*/L. If you’re interested in that level of detail, you should read the paper.

I should also note that MOND predicts βc = 2.12. Taken at face value, this implies that MOND prefers an average mass-to-light ratio slightly higher than what we assumed. This is well within the uncertainties, and we already know that MOND is the only theory capable of predicting the velocity dispersions of dwarf spheroidals in advance. We can always explain this after the fact with dark matter, which is what people generally do, often in apparent ignorance that MOND also correctly predicts which dwarfs they’ll have to invoke tidal disruption for. How such models can be considered satisfactory is quite beyond my capacity, but it does save one from the pain of having to critically reassess one’s belief system.

That’s all beyond the scope of the current paper. Here we just provide a nifty empirical result. If you want to make an apples-to-apples comparison of dwarf spheroidals with rotating dwarf irregulars, you will do well to assume Vo = 2σ*.

The RAR extended by weak lensing

The RAR extended by weak lensing

Last time, I expressed despondency about the lack of progress due to attitudes that in many ways remain firmly entrenched in the 1980s. Recently a nice result has appeared, so maybe there is some hope.

The radial acceleration relation (RAR) measured in rotationally supported galaxies extends down to an observed acceleration of about gobs = 10-11 m/s/s, about one part in 1000000000000 of the acceleration we feel here on the surface of the Earth. In some extreme dwarfs, we get down below 10-12 m/s/s. But accelerations this low are hard to find except in the depths of intergalactic space.

Weak lensing data

Brouwer et al have obtained a new constraint down to 10-12.5 m/s/s using weak gravitational lensing. This technique empowers one to probe the gravitational potential of massive galaxies out to nearly 1 Mpc. (The bulk of the luminous mass is typically confined within a few kpc.) To do this, one looks for the net statistical distortion in galaxies behind a lensing mass like a giant elliptical galaxy. I always found this approach a little scary, because you can’t see the signal directly with your eyes the way you can the velocities in a galaxy measured with a long slit spectrograph. Moreover, one has to bin and stack the data, so the result isn’t for an individual galaxy, but rather the average of galaxies within the bin, however defined. There are further technical issues that makes this challenging, but it’s what one has to do to get farther out.

Doing all that, Brouwer et al obtained this RAR:

The radial acceleration relation from weak lensing measured by Brouwer et al (2021). The red squares and bluescale at the top right are the RAR from rotating galaxies (McGaugh et al 2016). The blue, black, and orange points are the new weak lensing results.

To parse a few of the details: there are two basic results here, one from the GAMA survey (the blue points) and one from KiDS. KiDS is larger so has smaller formal errors, but relies on photometric redshifts (which uses lots of colors to guess the best match redshift). That’s probably OK in a statistical sense, but they are not as accurate as the spectroscopic redshifts measured for GAMA. There is a lot of structure in redshift space that gets washed out by photometric redshift estimates. The fact that the two basically agree hopefully means that this doesn’t matter here.

There are two versions of the KiDS data, one using just the stellar mass to estimate gbar, and another that includes an estimate of the coronal gas mass. Many galaxies are surrounded by a hot corona of gas. This is negligible at small radii where the stars dominate, but becomes progressively more important as part of the baryonic mass budget as one moves out. How important? Hard to say. But it certainly matters on scales of a few hundred kpc (this is the CGM in the baryon pie chart, which suggests roughly equal mass in stars (all within a few tens of kpc) and hot coronal gas (mostly out beyond 100 kpc). This corresponds to the orange points; the black points are what happens if we neglect this component (which certainly isn’t zero). So in there somewhere – this seems to be the dominant systematic uncertainty.

Getting past these pesky detail, this result is cool on many levels. First, the RAR appears to persist as a relation. That needn’t have happened. Second, it extends the RAR by a couple of decades to much lower accelerations. Third, it applies to non-rotating as well as rotationally supported galaxies (more on that in a bit). Fourth, the data at very low accelerations follow a straight line with a slope of about 1/2 in this log-log plot. That means gobs ~ gbar1/2. That provides a test of theory.

What does it mean?

Empirically, this is a confirmation that a known if widely unexpected relation extends further than previously known. That’s pretty neat in its own right, without any theoretical baggage. We used to be able to appreciate empirical relations better (e.g, the stellar main sequence!) before we understood what they meant. Now we seem to put the cart (theory) before the horse (data). That said, we do want to use data to test theories. Usually I discuss dark matter first, but that is complicated, so let’s start with MOND.

Test of MOND

MOND predicts what we see.

I am tempted to leave it at that, because it’s really that simple. But experience has taught me that no result is so obvious that someone won’t claim exactly the opposite, so let’s explore it a bit more.

There are three tests: whether the relation (i) exists, (ii) has the right slope, and (iii) has the right normalization. Tests (i) and (ii) are an immediate pass. It also looks like (iii) is very nearly correct, but it depends in detail on the baryonic mass-to-light ratio – that of the stars plus any coronal gas.

MOND is represented by the grey line that’s hard to see, but goes through the data at both high and low acceleration. At high accelerations, this particular line is a fitting function I chose for convenience. There’s nothing special about it, nor is it even specific to MOND. That was the point of our 2016 RAR paper: this relation exists in the data whether it is due to MOND or not. Conceivably, the RAR might be a relation that only applies to rotating galaxies for some reason that isn’t MOND. That’s hard to sustain, since the data look like MOND – so much so that the two are impossible to distinguish in this plane.

In terms of MOND, the RAR traces the interpolation function that quantifies the transition from the Newtonian regime where gobs = gbar to the deep MOND regime where gobs ~ gbar1/2. MOND does not specify the precise form of the interpolation function, just the asymptotic limits. The data trace that the transition, providing an empirical assessment of the shape of the interpolation function around the acceleration scale a0. That’s interesting and will hopefully inform further theory development, but it is not critical to testing MOND.

What MOND does very explicitly predict is the asymptotic behavior gobs ~ gbar1/2 in the deep MOND regime of low accelerations (gobs << a0). That the lensing data are well into this regime makes them an excellent test of this strong prediction of MOND. It passes with flying colors: the data have precisely the slope anticipated by Milgrom nearly 40 years ago.

This didn’t have to happen. All sorts of other things might have happened. Indeed, as we discussed in Lelli et al (2017), there were some hints that the relation flattened, saturating at a constant gobs around 10-11 m/s/s. I was never convinced that this was real, as it only appears in the least certain data, and there were already some weak lensing data to lower accelerations.

Milgrom (2013) analyzed weak lensing data that were available then, obtaining this figure:

Velocity dispersion-luminosity relation obtained from weak lensing data by Milgrom (2013). Lines are the expectation of MOND for mass-to-light ratios ranging from 1 to 6 in the r’-band, as labeled. The sample is split into red (early type, elliptical) and blue (late type, spiral) galaxies. The early types have a systematically higher M/L, as expected for their older stellar populations.

The new data corroborate this result. Here is a similar figure from Brouwer et al:

The RAR from weak lensing for galaxies split by Sesic index (left) and color (right).

Just looking at these figures, one can see the same type-dependent effect found by Milgrom. However, there is an important difference: Milgrom’s plot leaves the unknown mass-to-light ratio as a free parameter, while the new plot has an estimate of this built-in. So if the adopted M/L is correct, then the red and blue galaxies form parallel RARs that are almost but not quite exactly the same. That would not be consistent with MOND, which should place everything on the same relation. However, this difference is well within the uncertainty of the baryonic mass estimate – not just the M/L of the stars, but also the coronal gas content (i.e., the black vs. orange points in the first plot). MOND predicted this behavior well in advance of the observation, so one would have to bend over backwards, rub one’s belly, and simultaneously punch oneself in the face to portray this as anything short of a fantastic success of MOND.

The data! Look at the data!

I say that because I’m sure people will line up to punch themselves in the face in exactly this fashion*. One of the things that persuades me to suspect that there might be something to MOND is the lengths to which people will go to deny even its most obvious successes. At the same time, they are more than willing to cut any amount of slack necessary to save LCDM. An example is provided by Ludlow et al., who claim to explain the RAR ‘naturally’ from simulations – provided they spot themselves a magic factor of two in the stellar mass-to-light ratio. If it were natural, they wouldn’t need that arbitrary factor. By the same token, if you recognize that you might have been that far off about M*/L, you have to extend that same grace to MOND as you do to LCDM. That’s a basic tenet of objectivity, which used to be a value in science. It doesn’t look like a correction as large as a factor of two is necessary here given the uncertainty in the coronal gas. So, preemptively: Get a grip, people.

MOND predicts what we see. No other theory beat it to the punch. The best one can hope to do is to match its success after the fact by coming up with some other theory that looks just like MOND.

Test of LCDM

In order to test LCDM, we have to agree what LCDM predicts. That agreement is lacking. There is no clear prediction. This complicates the discussion, as the best one can hope to do is give a thorough discussion of all the possibilities that people have so far considered, which differ in important ways. That exercise is necessarily incomplete – people can always come up with new and different ideas for how to explain what they didn’t predict. I’ve been down the road of being thorough many times, which gets so complicated that no one reads it. So I will not attempt to be thorough here, and only explore enough examples to give a picture of where we’re currently at.

The tests are the same as above: should the relation (i) exist? (ii) have the observed slope? and (iii) normalization?

The first problem for LCDM is that the relation exists (i). There is no reason to expect this relation to exist. There was (and in some corners, continues to be) a lot of denial that the RAR even exists, because it shouldn’t. It does, and it looks just like what MOND predicts. LCDM is not MOND, and did not anticipate this behavior because there is no reason to do so.

If we persist past this point – and it is not obvious that we should – then we may say, OK, here’s this unexpected relation; how do we explain it? For starters, we do have a prediction for the density profiles of dark matter halos; these fall off as r-3. That translates to some slope in the RAR plane, but not a unique relation, as the normalization can and should be different for each halo. But it’s not even the right slope. The observed slope corresponds to a logarithmic potential in which the density profile falls off as r-2. That’s what is required to give a flat rotation curve in Newtonian dynamics, which is why the psedoisothermal halo was the standard model before simulations gave us the NFW halo with its r-3 fall off. The lensing data are like a flat rotation curve that extends indefinitely far out; they are not like an NFW halo.

That’s just stating the obvious. To do more requires building a model. Here is an example from Oman et al. of a model that follows the logic I just outlined, adding some necessary and reasonable assumptions about the baryons:

The “slight offset” from the observed RAR mentioned in the caption is the factor of two in stellar mass they spotted themselves in Ludlow et al. (2017).

The model is the orange line. It deviates from the black line that is the prediction of MOND. The data look like MOND, not like the orange line.

One can of course build other models. Brouwer et al discuss some. I will not explore these in detail, and only note that the models are not consistent, so there is no clear prediction from LCDM. To explore just one a little further, this figure appears at the very end of their paper, in appendix C:

The orange line in this case is some extrapolation of the model of Navarro et al. (2017).** This also does not work, though it doesn’t fail by as much as the model of Oman et al. I don’t understand how they make the extrapolation here, as a major prediction of Navarro et al. was that gobs would saturate at 10-11 ms/s/s; the orange line should flatten out near the middle of this plot. Indeed, they argued that we would never observe any lower accelerations, and that

“extending observations to radii well beyond the inner halo regions should lead to systematic deviations from the MDAR.”

– Navarro et al (2017)

This is a reasonable prediction for LCDM, but it isn’t what happened – the RAR continues as predicted by MOND. (The MDAR is equivalent to the RAR).

The astute reader may notice that many of these theorists are frequently coauthors, so you might expect they’d come up with a self-consistent model and stick to it. Unfortunately, consistency is not a hobgoblin that afflicts galaxy formation theory, and there are as many predictions as there are theorists (more for the prolific ones). They’re all over the map – which is the problem. LCDM makes no prediction to which everyone agrees. This makes it impossible to test the theory. If one model is wrong, that is just because that particular model is wrong, not because the theory is under threat. The theory is never under threat as there always seems to be another modeler who will claim success where others fail, whether they genuinely succeed or not. That they claim success is all that is required. Cognitive dissonance then takes over, people believe what they want to hear, and all anomalies are forgiven and forgotten. There never seems to be a proper prior that everyone would agree falsifies the theory if it fails. Galaxy formation in LCDM has become epicycles on steroids.

Whither now?

I have no idea. Continue to improve the data, of course. But the more important thing that needs to happen is a change in attitude. The attitude is that LCDM as a cosmology must be right so the mass discrepancy must be caused by non-baryonic dark matter so any observation like this must have a conventional explanation, no matter how absurd and convoluted. We’ve been stuck in this rut since before we even put the L in CDM. We refuse to consider alternatives so long as the standard model has not been falsified, but I don’t see how it can be falsified to the satisfaction of all – there’s always a caveat, a rub, some out that we’re willing to accept uncritically, no matter how silly. So in the rut we remain.

A priori predictions are an important part of the scientific method because they can’t be fudged. On the rare occasions when they come true, it is supposed to make us take note – even change our minds. These lensing results are just another of many previous corroborations of a priori predictions by MOND. What people do with that knowledge – build on it, choose to ignore it, or rant in denial – is up to them.


*Bertolt Brecht mocked this attitude amongst the Aristotelian philosophers in his play about Galileo, noting how they were eager to criticize the new dynamics if the heavier rock beat the lighter rock to the ground by so much as a centimeter in the Leaning Tower of Pisa experiment while turning a blind eye to their own prediction being off by a hundred meters.

**I worked hard to salvage dark matter, which included a lot of model building. I recognize the model of Navarro et al as a slight variation on a model I built in 2000 but did not publish because it was obviously wrong. It takes a lot of time to write a scientific paper, so a lot of null results never get reported. In 2000 when I did this, the natural assumption to make was that galaxies all had about the same disk fraction (the ratio of stars to dark matter, e.g., assumption (i) of Mo et al 1998). This predicts far too much scatter in the RAR, which is why I abandoned the model. Since then, this obvious and natural assumption has been replaced by abundance matching, in which the stellar mass fraction is allowed to vary to account for the difference between the predicted halo mass function and the observed galaxy luminosity function. In effect, we replaced a universal constant with a rolling fudge factor***. This has the effect of compressing the range of halo masses for a given range of stellar masses. This in turn reduces the “predicted” scatter in the RAR, just by taking away some of the variance that was naturally there. One could do better still with even more compression, as the data are crudely consistent with all galaxies living in the same dark matter halo. This is of course a consequence of MOND, in which the conventionally inferred dark matter halo is just the “extra” force specified by the interpolation function.

***This is an example of what I’ll call prediction creep for want of a better term. Originally, we thought that galaxies corresponded to balls of gas that had had time to cool and condense. As data accumulated, we realized that the baryon fractions of galaxies were not equal to the cosmic value fb; they were rather less. That meant that only a fraction of the baryons available in a dark matter halo had actually cooled to form the visible disk. So we introduced a parameter md = Mdisk/Mtot (as Mo et al. called it) where the disk is the visible stars and gas and the total includes that and all the dark matter out to the notional edge of the dark matter halo. We could have any md < fb, but they were in the same ballpark for massive galaxies, so it seemed reasonable to think that the disk fraction was a respectable fraction of the baryons – and the same for all galaxies, perhaps with some scatter. This also does not work; low mass galaxies have much lower md than high mass galaxies. Indeed, md becomes ridiculously small for the smallest galaxies, less than 1% of the available fb (a problem I’ve been worried about since the previous century). At each step, there has been a creep in what we “predict.” All the baryons should condense. Well, most of them. OK, fewer in low mass galaxies. Why? Feedback! How does that work? Don’t ask! You don’t want to know. So for a while the baryon fraction of a galaxy was just a random number stochastically generated by chance and feedback. That is reasonable (feedback is chaotic) but it doesn’t work; the variation of the disk fraction is a clear function of mass that has to have little scatter (or it pumps up the scatter in the Tully-Fisher relation). So we gradually backed our way into a paradigm where the disk fraction is a function md(M*). This has been around long enough that we have gotten used to the idea. Instead of seeing it for what it is – a rolling fudge factor – we call it natural as if it had been there from the start, as if we expected it all along. This is prediction creep. We did not predict anything of the sort. This is just an expectation built through familiarity with requirements imposed by the data, not genuine predictions made by the theory. It has become common to assert that some unnatural results are natural; this stems in part from assuming part of the answer: any model built on abundance matching is unnatural to start, because abundance matching is unnatural. Necessary, but not remotely what we expected before all the prediction creep. It’s creepy how flexible our predictions can be.

Divergence

Divergence

Reality check

Before we can agree on the interpretation of a set of facts, we have to agree on what those facts are. Even if we agree on the facts, we can differ about their interpretation. It is OK to disagree, and anyone who practices astrophysics is going to be wrong from time to time. It is the inevitable risk we take in trying to understand a universe that is vast beyond human comprehension. Heck, some people have made successful careers out of being wrong. This is OK, so long as we recognize and correct our mistakes. That’s a painful process, and there is an urge in human nature to deny such things, to pretend they never happened, or to assert that what was wrong was right all along.

This happens a lot, and it leads to a lot of weirdness. Beyond the many people in the field whom I already know personally, I tend to meet two kinds of scientists. There are those (usually other astronomers and astrophysicists) who might be familiar with my work on low surface brightness galaxies or galaxy evolution or stellar populations or the gas content of galaxies or the oxygen abundances of extragalactic HII regions or the Tully-Fisher relation or the cusp-core problem or faint blue galaxies or big bang nucleosynthesis or high redshift structure formation or joint constraints on cosmological parameters. These people behave like normal human beings. Then there are those (usually particle physicists) who have only heard of me in the context of MOND. These people often do not behave like normal human beings. They conflate me as a person with a theory that is Milgrom’s. They seem to believe that both are evil and must be destroyed. My presence, even the mere mention of my name, easily destabilizes their surprisingly fragile grasp on sanity.

One of the things that scientists-gone-crazy do is project their insecurities about the dark matter paradigm onto me. People who barely know me frequently attribute to me motivations that I neither have nor recognize. They presume that I have some anti-cosmology, anti-DM, pro-MOND agenda, and are remarkably comfortably about asserting to me what it is that I believe. What they never explain, or apparently bother to consider, is why I would be so obtuse? What is my motivation? I certainly don’t enjoy having the same argument over and over again with their ilk, which is the only thing it seems to get me.

The only agenda I have is a pro-science agenda. I want to know how the universe works.

This agenda is not theory-specific. In addition to lots of other astrophysics, I have worked on both dark matter and MOND. I will continue to work on both until we have a better understanding of how the universe works. Right now we’re very far away from obtaining that goal. Anyone who tells you otherwise is fooling themselves – usually by dint of ignoring inconvenient aspects of the evidence. Everyone is susceptible to cognitive dissonance. Scientists are no exception – I struggle with it all the time. What disturbs me is the number of scientists who apparently do not. The field is being overrun with posers who lack the self-awareness to question their own assumptions and biases.

So, I feel like I’m repeating myself here, but let me state my bias. Oh wait. I already did. That’s why it felt like repetition. It is.

The following bit of this post is adapted from an old web page I wrote well over a decade ago. I’ve lost track of exactly when – the file has been through many changes in computer systems, and unix only records the last edit date. For the linked page, that’s 2016, when I added a few comments. The original is much older, and was written while I was at the University of Maryland. Judging from the html style, it was probably early to mid-’00s. Of course, the sentiment is much older, as it shouldn’t need to be said at all.

I will make a few updates as seem appropriate, so check the link if you want to see the changes. I will add new material at the end.


Long standing remarks on intellectual honesty

The debate about MOND often degenerates into something that falls well short of the sober, objective discussion that is suppose to characterize scientific debates. One can tell when voices are raised and baseless ad hominem accusations made. I have, with disturbing frequency, found myself accused of partisanship and intellectual dishonesty, usually by people who are as fair and balanced as Fox News.

Let me state with absolute clarity that intellectual honesty is a bedrock principle of mine. My attitude is summed up well by the quote

When a man lies, he murders some part of the world.

Paul Gerhardt

I first heard this spoken by the character Merlin in the movie Excalibur (1981 version). Others may have heard it in a song by Metallica. As best I can tell, it is originally attributable to the 17th century cleric Paul Gerhardt.

This is a great quote for science, as the intent is clear. We don’t get to pick and choose our facts. Outright lying about them is antithetical to science.

I would extend this to ignoring facts. One should not only be honest, but also as complete as possible. It does not suffice to be truthful while leaving unpleasant or unpopular facts unsaid. This is lying by omission.

I “grew up” believing in dark matter. Specifically, Cold Dark Matter, presumably a WIMP. I didn’t think MOND was wrong so much as I didn’t think about it at all. Barely heard of it; not worth the bother. So I was shocked – and angered – when it its predictions came true in my data for low surface brightness galaxies. So I understand when my colleagues have the same reaction.

Nevertheless, Milgrom got the prediction right. I had a prediction, it was wrong. There were other conventional predictions, they were also wrong. Indeed, dark matter based theories generically have a very hard time explaining these data. In a Bayesian sense, given the prior that we live in a ΛCDM universe, the probability that MONDian phenomenology would be observed is practically zero. Yet it is. (This is very well established, and has been for some time.)

So – confronted with an unpopular theory that nevertheless had some important predictions come true, I reported that fact. I could have ignored it, pretended it didn’t happen, covered my eyes and shouted LA LA LA NOT LISTENING. With the benefit of hindsight, that certainly would have been the savvy career move. But it would also be ignoring a fact, and tantamount to a lie.

In short, though it was painful and protracted, I changed my mind. Isn’t that what the scientific method says we’re suppose to do when confronted with experimental evidence?

That was my experience. When confronted with evidence that contradicted my preexisting world view, I was deeply troubled. I tried to reject it. I did an enormous amount of fact-checking. The people who presume I must be wrong have not had this experience, and haven’t bothered to do any fact-checking. Why bother when you already are sure of the answer?


Willful Ignorance

I understand being skeptical about MOND. I understand being more comfortable with dark matter. That’s where I started from myself, so as I said above, I can empathize with people who come to the problem this way. This is a perfectly reasonable place to start.

For me, that was over a quarter century ago. I can understand there being some time lag. That is not what is going on. There has been ample time to process and assimilate this information. Instead, most physicists have chosen to remain ignorant. Worse, many persist in spreading what can only be described as misinformation. I don’t think they are liars; rather, it seems that they believe their own bullshit.

To give an example of disinformation, I still hear said things like “MOND fits rotation curves but nothing else.” This is not true. The first thing I did was check into exactly that. Years of fact-checking went into McGaugh & de Blok (1998), and I’ve done plenty more since. It came as a great surprise to me that MOND explained the vast majority of the data as well or better than dark matter. Not everything, to be sure, but lots more than “just” rotation curves. Yet this old falsehood still gets repeated as if it were not a misconception that was put to rest in the previous century. We’re stuck in the dark ages by choice.

It is not a defensible choice. There is no excuse to remain ignorant of MOND at this juncture in the progress of astrophysics. It is incredibly biased to point to its failings without contending with its many predictive successes. It is tragi-comically absurd to assume that dark matter provides a better explanation when it cannot make the same predictions in advance. MOND may not be correct in every particular, and makes no pretense to be a complete theory of everything. But it is demonstrably less wrong than dark matter when it comes to predicting the dynamics of systems in the low acceleration regime. Pretending like this means nothing is tantamount to ignoring essential facts.

Even a lie of omission murders a part of the world.

Does Newton’s Constant Vary?

Does Newton’s Constant Vary?

This title is an example of what has come to be called Betteridge’s law. This is a relatively recent name for an old phenomenon: if a title is posed as a question, the answer is no. This is especially true in science, whether the authors are conscious of it or not.

Pengfei Li completed his Ph.D. recently, fitting all manner of dark matter halos as well as the radial acceleration relation (RAR) to galaxies in the SPARC database. For the RAR, he found that galaxy data were consistent with a single, universal acceleration scale, g+. There is of course scatter in the data, but this appears to us to be consistent with what we expect from variation in the mass-to-light ratios of stars and the various uncertainties in the data.

This conclusion has been controversial despite being painfully obvious. I have my own law for data interpretation in astronomy:

Obvious results provoke opposition. The more obvious the result, the stronger the opposition.

S. McGaugh, 1997

The constancy of the acceleration scale is such a case. Where we do not believe we can distinguish between galaxies, others think they can – using our own data! Here it is worth contemplating what all is involved in building a database like SPARC – we were the ones who did the work, after all. In the case of the photometry, we observed the galaxies, we reduced the data, we cleaned the images of foreground contaminants (stars), we fit isophotes, we built mass models – that’s a very short version of what we did in order to be able to estimate the acceleration predicted by Newtonian gravity for the observed distribution of stars. That’s one axis of the RAR. The other is the observed acceleration, which comes from rotation curves, which require even more work. I will spare you the work flow; we did some galaxies ourselves, and took others from the literature in full appreciation of what we could and could not believe — which we have a deep appreciation for because we do the same kind of work ourselves. In contrast, the people claiming to find the opposite of what we find obtained the data by downloading it from our website. The only thing they do is the very last step in the analysis, making fits with Bayesian statistics the same as we do, but in manifest ignorance of the process by which the data came to be. This leads to an underappreciation of the uncertainty in the uncertainties.

This is another rule of thumb in science: outside groups are unlikely to discover important things that were overlooked by the group that did the original work. An example from about seven years ago was the putative 126 GeV line in Fermi satellite data. This was thought by some at the time to be evidence for dark matter annihilating into gamma rays with energy corresponding to the rest mass of the dark matter particles and their anti-particles. This would be a remarkable, Nobel-winning discovery, if true. Strange then that the claim was not made by the Fermi team themselves. Did outsiders beat them to the punch with their own data? It can happen: sometimes large collaborations can be slow to move on important results, wanting to vet everything carefully or warring internally over its meaning while outside investigators move more swiftly. But it can also be that the vetting shows that the exciting result is not credible.

I recall the 126 GeV line being a big deal. There was an entire session devoted to it at a conference I was scheduled to attend. Our time is valuable: I can’t go to every interesting conference, and don’t want to spend time on conferences that aren’t interesting. I was skeptical, simply because of the rule of thumb. I wrote the organizers, and asked if they really thought that this would still be a thing by the time the conference happened in few months’ time. Some of them certainly thought so, so it went ahead. As it happened, it wasn’t. Not a single speaker who was scheduled to talk about the 126 GeV line actually did so. In a few short months, if had gone from an exciting result sure to win a Nobel prize to nada.

What 126 GeV line? Did I say that? I don’t recall saying that.

This happens all the time. Science isn’t as simple as a dry table of numbers and error bars. This is especially true in astronomy, where we are observing objects in the sky. It is never possible to do an ideal experiment in which one controls for all possible systematics: the universe is not a closed box in which we can control the conditions. Heck, we don’t even know what all the unknowns are. It is a big friggin’ universe.

The practical consequence of this is that the uncertainty in any astronomical measurement is almost always larger than its formal error bar. There are effects we can quantify and include appropriately in the error assessment. There are things we can not. We know they’re there, but that doesn’t mean we can put a meaningful number on them.

Indeed, the sociology of this has evolved over the course of my career. Back in the day, everybody understood these things, and took the stated errors with a grain of salt. If it was important to estimate the systematic uncertainty, it was common to estimate a wide band, in effect saying “I’m pretty sure it is in this range.” Nowadays, it has become common to split out terms for random and systematic error. This is helpful to the non-specialist, but it can also be misleading because, so stated, the confidence interval on the systematic looks like a 1 sigma error even though it is not likely to have a Gaussian distribution. Being 3 sigma off of the central value might be a lot more likely than this implies — or a lot less.

People have become more careful in making error estimates, which ironically has made matters worse. People seem to think that they can actually believe the error bars. Sometimes you can, but sometimes not. Many people don’t know how much salt to take it with, or realize that they should take it with a grain of salt at all. Worse, more and more folks come over from particle physics where extraordinary accuracy is the norm. They are completely unprepared to cope with astronomical data, or even fully process that the error bars may not be what they think they are. There is no appreciation for the uncertainties in the uncertainties, which is absolutely fundamental in astrophysics.

Consequently, one gets overly credulous analyses. In the case of the RAR, a number of papers have claimed that the acceleration scale isn’t constant. Not even remotely! Why do they make this claim?

Below is a histogram of raw acceleration scales from SPARC galaxies. In effect, they are claiming that they can tell the difference between galaxies in the tail on one side of the histogram from those on the opposite side. We don’t think we can, which is the more conservative claim. The width of the histogram is just the scatter that one expects from astronomical data, so the data are consistent with zero intrinsic scatter. That’s not to say that’s necessarily what Nature is doing: we can never measure zero scatter, so it is always conceivable that there is some intrinsic variation in the characteristic acceleration scale. All we can say is that if is there, it is so small that we cannot yet resolve it.

Histogram of the acceleration scale in individual galaxies g+ relative the characteristic value a0.

Posed as a histogram like this, it is easy to see that there is a characteristic value – the peak – with some scatter around it. The entire issue it whether that scatter is due to real variation from galaxy to galaxy, or if it is just noise. One way to check this is to make quality cuts: in the plot above, the gray-striped histogram plots every available galaxy. The solid blue one makes some mild quality cuts, like knowing the distance to better than 20%. That matters, because the acceleration scale is a quantity that depends on distance – a notoriously difficult quantity to measure accurately in astronomy. When this quality cut is imposed, the width of the histogram shrinks. The better data make a tighter histogram – just as one would expect if the scatter is due to noise. If instead the scatter is a real, physical effect, it should, if anything, be more pronounced in the better data.

This should not be difficult to understand. And yet – other representations of the data give a different impression, like this one:

Best-fit accelerations from Marra et al. (2020).

This figure tells a very different story. The characteristic acceleration does not just scatter around a universal value. There is a clear correlation from one end of the plot to the other. Indeed, it is a perfectly smooth transition, because “Galaxy” is the number of each galaxy ordered by the value of its acceleration, from lowest to highest. The axes are not independent, they represent identically the same quantity. It is a plot of x against x. If properly projected it into a histogram, it would look like the one above.

This is a terrible way to plot data. It makes it look like there is a correlation where there is none. Setting this aside, there is a potential issue with the most discrepant galaxies – those at either extreme. There are more points that are roughly 3 sigma from a constant value than there should be for a sample this size. If this is the right assessment of the uncertainty, then there is indeed some variation from galaxy to galaxy. Not much, but the galaxies at the left hand side of the plot are different from those on the right hand side.

But can we believe the formal uncertainties that inform this error analysis? If you’ve read this far, you will anticipate that the answer to this question obeys Betteridge’s law. No.

One of the reasons we can’t just assign confidence intervals and believe them like a common physicist is that there are other factors in the analysis – nuisance parameters in Bayesian verbiage – with which the acceleration scale covaries. That’s a fancy way of saying that if we turn one knob, it affects another. We assign priors to the nuisance parameters (e.g., the distance to each galaxy and its inclination) based on independent measurements. But there is still some room to slop around. The question is really what to believe at the end of the analysis. We don’t think we can distinguish the acceleration scale from one galaxy to another, but this other analysis says we should. So which is it?

It is easy at this point to devolve into accusations of picking priors to obtain a preconceived result. I don’t think anyone is doing that. But how to show it?

Pengfei had the brilliant idea to perform the same analysis as Marra et al., but allowing Newton’s constant to vary. This is Big G, a universal constant that’s been known to be a constant of nature for centuries. It surely does not vary. However, G appears in our equations, so we can test for variation therein. Pengfei did this, following the same procedure as Mara et al., and finds the same kind of graph – now for G instead of g+.

Best fit values of Newton’s constant from Li et al (2021).

You see here the same kind of trend for Newton’s constant as one sees above for the acceleration scale. The same data have been analyzed in the same way. It has also been plotted in the same way, giving the impression of a correlation where there is none. The result is also the same: if we believe the formal uncertainties, the best-fit G is different for the galaxies at the left than from those to the right.

I’m pretty sure Newton’s constant does not vary this much. I’m entirely sure that the rotation curve data we analyze are not capable of making this determination. It would be absurd to claim so. The same absurdity extends to the acceleration scale g+. If we don’t believe the variation in G, there’s no reason to believe that in g+.


So what is going on here? It boils down to the errors on the rotation curves not representing the uncertainty in the circular velocity as we would like for them to. There are all sorts of reasons for this, observational, physical, and systematic. I’ve written about this at great lengths elsewhere, and I haven’t the patience to do so again here. it is turgidly technical to the extent that even the pros don’t read it. It boils down to the ancient, forgotten wisdom of astronomy: you have to take the errors with a grain of salt.

Here is the cumulative distribution (CDF) of reduced chi squared for the plot above.

Cumulative distribution of reduced chi-squared for different priors on Newton’s constant.

Two things to notice here. First, the CDF looks the same regardless of whether we let Newton’s constant vary or not, or how we assign the Bayesian priors. There’s no value added in letting it vary – just as we found for the characteristic acceleration scale in the first place. Second, the reduced chi squared is rarely close to one. It should be! As a goodness of fit measure, one claims to have a good fit when chi squared equal to one. The majority of these are not good fits! Rather than the gradual slope we see here, the CDF of chi squared should be a nearly straight vertical line. That’s nothing like what we see.

If one interprets this literally, there are many large chi squared values well in excess of unity. These are bad fits, and the model should be rejected. That’s exactly what Rodrigues et al. (2018) found, rejecting the constancy of the acceleration scale at 10 sigma. By their reasoning, we must also reject the constancy of Newton’s constant with the same high confidence. That’s just silly.

One strange thing: the people complaining that the acceleration scale is not constant are only testing that hypothesis. Their presumption is that if the data reject that, it falsifies MOND. The attitude is that this is an automatic win for dark matter. Is it? They don’t bother checking.

We do. We can do the same exercise with dark matter. We find the same result. The CDF looks the same; there are many galaxies with chi squared that is too large.

CDF of rotation curve fits with various types of dark matter halos. None provide a satisfactory fit (as indicated by chi squared) to all galaxies.

Having found the same result for dark matter halos that we found for the RAR, if we apply the same logic, then all proposed model halos are excluded. There are too many bad fits with overly large chi squared.

We have now ruled out all conceivable models. Dark matter is falsified. MOND is falsified. Nothing works. Look on these data, ye mighty, and despair.

But wait! Should we believe the error bars that lead to the end of all things? What would Betteridge say?

Here is the rotation curve of DDO 170 fit with the RAR. Look first at the left box, with the data (points) and the fit (red line). Then look at the fit parameters in the right box.

RAR fit to the rotation curve of DDO 170 (left) with fit parameters at right.

Looking at the left panel, this is a good fit. The line representing the model provides a reasonable depiction of the data.

Looking at the right panel, this is a terrible fit. The reduced chi squared is 4.9. That’s a lot larger than one! The model is rejected with high confidence.

Well, which is it? Lots of people fall into the trap of blindly trusting statistical tests like chi squared. Statistics can only help your brain. They can’t replace it. Trust your eye-brain. This is a good fit. Chi squared is overly large not because this is a bad model but because the error bars are too small. The absolute amount by which the data “miss” is just a few km/s. This is not much by the standards of galaxies, and could easily be explained by a small departure of the tracer from a purely circular orbit – a physical effect we expect at that level. Or it could simply be that the errors are underestimated. Either way, it isn’t a big deal. It would be incredibly naive to take chi squared at face value.

If you want to see a dozen plots like this for all the various models fit to each of over a hundred galaxies, see Li et al. (2020). The bottom line is always the same. The same galaxies are poorly fit by any model — dark matter or MOND. Chi squared is too big not because all conceivable models are wrong, but because the formal errors are underestimated in many cases.

This comes as no surprise to anyone with experience working with astronomical data. We can work to improve the data and the error estimation – see, for example, Sellwood et al (2021). But we can’t blindly turn the crank on some statistical black box and expect all the secrets of the universe to tumble out onto a silver platter for our delectation. There’s a little more to it than that.