Last time, I expressed despondency about the lack of progress due to attitudes that in many ways remain firmly entrenched in the 1980s. Recently a nice result has appeared, so maybe there is some hope.

The radial acceleration relation (RAR) measured in rotationally supported galaxies extends down to an observed acceleration of about gobs = 10-11 m/s/s, about one part in 1000000000000 of the acceleration we feel here on the surface of the Earth. In some extreme dwarfs, we get down below 10-12 m/s/s. But accelerations this low are hard to find except in the depths of intergalactic space.

Weak lensing data

Brouwer et al have obtained a new constraint down to 10-12.5 m/s/s using weak gravitational lensing. This technique empowers one to probe the gravitational potential of massive galaxies out to nearly 1 Mpc. (The bulk of the luminous mass is typically confined within a few kpc.) To do this, one looks for the net statistical distortion in galaxies behind a lensing mass like a giant elliptical galaxy. I always found this approach a little scary, because you can’t see the signal directly with your eyes the way you can the velocities in a galaxy measured with a long slit spectrograph. Moreover, one has to bin and stack the data, so the result isn’t for an individual galaxy, but rather the average of galaxies within the bin, however defined. There are further technical issues that makes this challenging, but it’s what one has to do to get farther out.

Doing all that, Brouwer et al obtained this RAR:

The radial acceleration relation from weak lensing measured by Brouwer et al (2021). The red squares and bluescale at the top right are the RAR from rotating galaxies (McGaugh et al 2016). The blue, black, and orange points are the new weak lensing results.

To parse a few of the details: there are two basic results here, one from the GAMA survey (the blue points) and one from KiDS. KiDS is larger so has smaller formal errors, but relies on photometric redshifts (which uses lots of colors to guess the best match redshift). That’s probably OK in a statistical sense, but they are not as accurate as the spectroscopic redshifts measured for GAMA. There is a lot of structure in redshift space that gets washed out by photometric redshift estimates. The fact that the two basically agree hopefully means that this doesn’t matter here.

There are two versions of the KiDS data, one using just the stellar mass to estimate gbar, and another that includes an estimate of the coronal gas mass. Many galaxies are surrounded by a hot corona of gas. This is negligible at small radii where the stars dominate, but becomes progressively more important as part of the baryonic mass budget as one moves out. How important? Hard to say. But it certainly matters on scales of a few hundred kpc (this is the CGM in the baryon pie chart, which suggests roughly equal mass in stars (all within a few tens of kpc) and hot coronal gas (mostly out beyond 100 kpc). This corresponds to the orange points; the black points are what happens if we neglect this component (which certainly isn’t zero). So in there somewhere – this seems to be the dominant systematic uncertainty.

Getting past these pesky detail, this result is cool on many levels. First, the RAR appears to persist as a relation. That needn’t have happened. Second, it extends the RAR by a couple of decades to much lower accelerations. Third, it applies to non-rotating as well as rotationally supported galaxies (more on that in a bit). Fourth, the data at very low accelerations follow a straight line with a slope of about 1/2 in this log-log plot. That means gobs ~ gbar1/2. That provides a test of theory.

What does it mean?

Empirically, this is a confirmation that a known if widely unexpected relation extends further than previously known. That’s pretty neat in its own right, without any theoretical baggage. We used to be able to appreciate empirical relations better (e.g, the stellar main sequence!) before we understood what they meant. Now we seem to put the cart (theory) before the horse (data). That said, we do want to use data to test theories. Usually I discuss dark matter first, but that is complicated, so let’s start with MOND.

Test of MOND

MOND predicts what we see.

I am tempted to leave it at that, because it’s really that simple. But experience has taught me that no result is so obvious that someone won’t claim exactly the opposite, so let’s explore it a bit more.

There are three tests: whether the relation (i) exists, (ii) has the right slope, and (iii) has the right normalization. Tests (i) and (ii) are an immediate pass. It also looks like (iii) is very nearly correct, but it depends in detail on the baryonic mass-to-light ratio – that of the stars plus any coronal gas.

MOND is represented by the grey line that’s hard to see, but goes through the data at both high and low acceleration. At high accelerations, this particular line is a fitting function I chose for convenience. There’s nothing special about it, nor is it even specific to MOND. That was the point of our 2016 RAR paper: this relation exists in the data whether it is due to MOND or not. Conceivably, the RAR might be a relation that only applies to rotating galaxies for some reason that isn’t MOND. That’s hard to sustain, since the data look like MOND – so much so that the two are impossible to distinguish in this plane.

In terms of MOND, the RAR traces the interpolation function that quantifies the transition from the Newtonian regime where gobs = gbar to the deep MOND regime where gobs ~ gbar1/2. MOND does not specify the precise form of the interpolation function, just the asymptotic limits. The data trace that the transition, providing an empirical assessment of the shape of the interpolation function around the acceleration scale a0. That’s interesting and will hopefully inform further theory development, but it is not critical to testing MOND.

What MOND does very explicitly predict is the asymptotic behavior gobs ~ gbar1/2 in the deep MOND regime of low accelerations (gobs << a0). That the lensing data are well into this regime makes them an excellent test of this strong prediction of MOND. It passes with flying colors: the data have precisely the slope anticipated by Milgrom nearly 40 years ago.

This didn’t have to happen. All sorts of other things might have happened. Indeed, as we discussed in Lelli et al (2017), there were some hints that the relation flattened, saturating at a constant gobs around 10-11 m/s/s. I was never convinced that this was real, as it only appears in the least certain data, and there were already some weak lensing data to lower accelerations.

Milgrom (2013) analyzed weak lensing data that were available then, obtaining this figure:

Velocity dispersion-luminosity relation obtained from weak lensing data by Milgrom (2013). Lines are the expectation of MOND for mass-to-light ratios ranging from 1 to 6 in the r’-band, as labeled. The sample is split into red (early type, elliptical) and blue (late type, spiral) galaxies. The early types have a systematically higher M/L, as expected for their older stellar populations.

The new data corroborate this result. Here is a similar figure from Brouwer et al:

The RAR from weak lensing for galaxies split by Sesic index (left) and color (right).

Just looking at these figures, one can see the same type-dependent effect found by Milgrom. However, there is an important difference: Milgrom’s plot leaves the unknown mass-to-light ratio as a free parameter, while the new plot has an estimate of this built-in. So if the adopted M/L is correct, then the red and blue galaxies form parallel RARs that are almost but not quite exactly the same. That would not be consistent with MOND, which should place everything on the same relation. However, this difference is well within the uncertainty of the baryonic mass estimate – not just the M/L of the stars, but also the coronal gas content (i.e., the black vs. orange points in the first plot). MOND predicted this behavior well in advance of the observation, so one would have to bend over backwards, rub one’s belly, and simultaneously punch oneself in the face to portray this as anything short of a fantastic success of MOND.

The data! Look at the data!

I say that because I’m sure people will line up to punch themselves in the face in exactly this fashion*. One of the things that persuades me to suspect that there might be something to MOND is the lengths to which people will go to deny even its most obvious successes. At the same time, they are more than willing to cut any amount of slack necessary to save LCDM. An example is provided by Ludlow et al., who claim to explain the RAR ‘naturally’ from simulations – provided they spot themselves a magic factor of two in the stellar mass-to-light ratio. If it were natural, they wouldn’t need that arbitrary factor. By the same token, if you recognize that you might have been that far off about M*/L, you have to extend that same grace to MOND as you do to LCDM. That’s a basic tenet of objectivity, which used to be a value in science. It doesn’t look like a correction as large as a factor of two is necessary here given the uncertainty in the coronal gas. So, preemptively: Get a grip, people.

MOND predicts what we see. No other theory beat it to the punch. The best one can hope to do is to match its success after the fact by coming up with some other theory that looks just like MOND.

Test of LCDM

In order to test LCDM, we have to agree what LCDM predicts. That agreement is lacking. There is no clear prediction. This complicates the discussion, as the best one can hope to do is give a thorough discussion of all the possibilities that people have so far considered, which differ in important ways. That exercise is necessarily incomplete – people can always come up with new and different ideas for how to explain what they didn’t predict. I’ve been down the road of being thorough many times, which gets so complicated that no one reads it. So I will not attempt to be thorough here, and only explore enough examples to give a picture of where we’re currently at.

The tests are the same as above: should the relation (i) exist? (ii) have the observed slope? and (iii) normalization?

The first problem for LCDM is that the relation exists (i). There is no reason to expect this relation to exist. There was (and in some corners, continues to be) a lot of denial that the RAR even exists, because it shouldn’t. It does, and it looks just like what MOND predicts. LCDM is not MOND, and did not anticipate this behavior because there is no reason to do so.

If we persist past this point – and it is not obvious that we should – then we may say, OK, here’s this unexpected relation; how do we explain it? For starters, we do have a prediction for the density profiles of dark matter halos; these fall off as r-3. That translates to some slope in the RAR plane, but not a unique relation, as the normalization can and should be different for each halo. But it’s not even the right slope. The observed slope corresponds to a logarithmic potential in which the density profile falls off as r-2. That’s what is required to give a flat rotation curve in Newtonian dynamics, which is why the psedoisothermal halo was the standard model before simulations gave us the NFW halo with its r-3 fall off. The lensing data are like a flat rotation curve that extends indefinitely far out; they are not like an NFW halo.

That’s just stating the obvious. To do more requires building a model. Here is an example from Oman et al. of a model that follows the logic I just outlined, adding some necessary and reasonable assumptions about the baryons:

The “slight offset” from the observed RAR mentioned in the caption is the factor of two in stellar mass they spotted themselves in Ludlow et al. (2017).

The model is the orange line. It deviates from the black line that is the prediction of MOND. The data look like MOND, not like the orange line.

One can of course build other models. Brouwer et al discuss some. I will not explore these in detail, and only note that the models are not consistent, so there is no clear prediction from LCDM. To explore just one a little further, this figure appears at the very end of their paper, in appendix C:

The orange line in this case is some extrapolation of the model of Navarro et al. (2017).** This also does not work, though it doesn’t fail by as much as the model of Oman et al. I don’t understand how they make the extrapolation here, as a major prediction of Navarro et al. was that gobs would saturate at 10-11 ms/s/s; the orange line should flatten out near the middle of this plot. Indeed, they argued that we would never observe any lower accelerations, and that

“extending observations to radii well beyond the inner halo regions should lead to systematic deviations from the MDAR.”

– Navarro et al (2017)

This is a reasonable prediction for LCDM, but it isn’t what happened – the RAR continues as predicted by MOND. (The MDAR is equivalent to the RAR).

The astute reader may notice that many of these theorists are frequently coauthors, so you might expect they’d come up with a self-consistent model and stick to it. Unfortunately, consistency is not a hobgoblin that afflicts galaxy formation theory, and there are as many predictions as there are theorists (more for the prolific ones). They’re all over the map – which is the problem. LCDM makes no prediction to which everyone agrees. This makes it impossible to test the theory. If one model is wrong, that is just because that particular model is wrong, not because the theory is under threat. The theory is never under threat as there always seems to be another modeler who will claim success where others fail, whether they genuinely succeed or not. That they claim success is all that is required. Cognitive dissonance then takes over, people believe what they want to hear, and all anomalies are forgiven and forgotten. There never seems to be a proper prior that everyone would agree falsifies the theory if it fails. Galaxy formation in LCDM has become epicycles on steroids.

Whither now?

I have no idea. Continue to improve the data, of course. But the more important thing that needs to happen is a change in attitude. The attitude is that LCDM as a cosmology must be right so the mass discrepancy must be caused by non-baryonic dark matter so any observation like this must have a conventional explanation, no matter how absurd and convoluted. We’ve been stuck in this rut since before we even put the L in CDM. We refuse to consider alternatives so long as the standard model has not been falsified, but I don’t see how it can be falsified to the satisfaction of all – there’s always a caveat, a rub, some out that we’re willing to accept uncritically, no matter how silly. So in the rut we remain.

A priori predictions are an important part of the scientific method because they can’t be fudged. On the rare occasions when they come true, it is supposed to make us take note – even change our minds. These lensing results are just another of many previous corroborations of a priori predictions by MOND. What people do with that knowledge – build on it, choose to ignore it, or rant in denial – is up to them.


*Bertolt Brecht mocked this attitude amongst the Aristotelian philosophers in his play about Galileo, noting how they were eager to criticize the new dynamics if the heavier rock beat the lighter rock to the ground by so much as a centimeter in the Leaning Tower of Pisa experiment while turning a blind eye to their own prediction being off by a hundred meters.

**I worked hard to salvage dark matter, which included a lot of model building. I recognize the model of Navarro et al as a slight variation on a model I built in 2000 but did not publish because it was obviously wrong. It takes a lot of time to write a scientific paper, so a lot of null results never get reported. In 2000 when I did this, the natural assumption to make was that galaxies all had about the same disk fraction (the ratio of stars to dark matter, e.g., assumption (i) of Mo et al 1998). This predicts far too much scatter in the RAR, which is why I abandoned the model. Since then, this obvious and natural assumption has been replaced by abundance matching, in which the stellar mass fraction is allowed to vary to account for the difference between the predicted halo mass function and the observed galaxy luminosity function. In effect, we replaced a universal constant with a rolling fudge factor***. This has the effect of compressing the range of halo masses for a given range of stellar masses. This in turn reduces the “predicted” scatter in the RAR, just by taking away some of the variance that was naturally there. One could do better still with even more compression, as the data are crudely consistent with all galaxies living in the same dark matter halo. This is of course a consequence of MOND, in which the conventionally inferred dark matter halo is just the “extra” force specified by the interpolation function.

***This is an example of what I’ll call prediction creep for want of a better term. Originally, we thought that galaxies corresponded to balls of gas that had had time to cool and condense. As data accumulated, we realized that the baryon fractions of galaxies were not equal to the cosmic value fb; they were rather less. That meant that only a fraction of the baryons available in a dark matter halo had actually cooled to form the visible disk. So we introduced a parameter md = Mdisk/Mtot (as Mo et al. called it) where the disk is the visible stars and gas and the total includes that and all the dark matter out to the notional edge of the dark matter halo. We could have any md < fb, but they were in the same ballpark for massive galaxies, so it seemed reasonable to think that the disk fraction was a respectable fraction of the baryons – and the same for all galaxies, perhaps with some scatter. This also does not work; low mass galaxies have much lower md than high mass galaxies. Indeed, md becomes ridiculously small for the smallest galaxies, less than 1% of the available fb (a problem I’ve been worried about since the previous century). At each step, there has been a creep in what we “predict.” All the baryons should condense. Well, most of them. OK, fewer in low mass galaxies. Why? Feedback! How does that work? Don’t ask! You don’t want to know. So for a while the baryon fraction of a galaxy was just a random number stochastically generated by chance and feedback. That is reasonable (feedback is chaotic) but it doesn’t work; the variation of the disk fraction is a clear function of mass that has to have little scatter (or it pumps up the scatter in the Tully-Fisher relation). So we gradually backed our way into a paradigm where the disk fraction is a function md(M*). This has been around long enough that we have gotten used to the idea. Instead of seeing it for what it is – a rolling fudge factor – we call it natural as if it had been there from the start, as if we expected it all along. This is prediction creep. We did not predict anything of the sort. This is just an expectation built through familiarity with requirements imposed by the data, not genuine predictions made by the theory. It has become common to assert that some unnatural results are natural; this stems in part from assuming part of the answer: any model built on abundance matching is unnatural to start, because abundance matching is unnatural. Necessary, but not remotely what we expected before all the prediction creep. It’s creepy how flexible our predictions can be.