This is what I hope will be the final installment in a series of posts describing the results published in McGaugh et al. (2024). I started by discussing the timescale for galaxy formation in LCDM and MOND which leads to different and distinct predictions. I then discussed the observations that constrain the growth of stellar mass over cosmic time and the related observation of stellar populations that are mature for the age of the universe. I then put on an LCDM hat to try to figure out ways to wriggle out of the obvious conclusion that galaxies grew too massive too fast. Exploring all the arguments that will be made is the hardest part, not because they are difficult to anticipate, but because there are so many* options to consider. This leads to many pages of minutiae that no one ever seems to read+, so one of the options I’ve discussed (e.g., super-efficient star formation) will likely emerge as the standard picture even if it comes pre-debunked.
The emphasis so far has been on the evolution of the stellar masses of galaxies because that is observationally most accessible. That gives us the opportunity to wriggle, because what we really want to measure to test LCDM is the growth of [dark] mass. This is well-predicted but invisible, so we can always play games to relate light to mass.

Galaxy Kinematics
What we really want to know is the underlying mass. It is reasonable to expect that the light traces this mass, but is there another way to assess it? Yes: kinematics. The orbital speeds of objects in galaxies trace the total potential, including the dark matter. So, how massive were early galaxies? How does that evolve with redshift?

The rotation curve for NGC 6946 shows a number of well-established characteristics for nearby galaxies, including the dominance of baryons at small radii in high surface brightness galaxies and the famous flat outer portion of the rotation curve. Even when stars contribute as much mass as allowed by the inner rotation curve (“maximum disk“), there is a need for something extra further out (i.e., dark matter or MOND). In the case of dark matter, the amplitude of flat rotation is typically interpreted as being indicative& of halo mass.
So far, the rotation curves of high redshift galaxies look very much like those of low redshift galaxies. There are some fast rotators at high redshift as well. Here is an example observed by Neeleman et al. (2020), who measure a flat rotation speed of 272 km/s for DLA0817g at z = 4.26. That’s more massive than either the Milky Way (~200 km/s) or Andromeda (~230 km/s), if not quite as big as local heavyweight champion UGC 2885 (300 km/s). DLA0817g looks to be a disk galaxy that formed early and is sedately rotating only 1.4 Gyr after the Big Bang. It is already massive at this time: not at all the little nuggets we expect from the CDM merger tree above.

This is anecdotal, of course, but there are a good number of similar cases that are already known. For example, the kinematics of ALESS 073.1 at z ≈ 5 indicate the presence of a massive stellar bulge as well as a rapidly rotating disk (Lelli et al. 2021). A similar case has been observed at z ≈ 6 (Tripodi et al. 2023). These kinematic observations indicate the presence of mature, massive disk galaxies well before they were expected to be in place (Pillepich et al. 2019; Wardlow 2021). The high rotation speeds observed in early disk galaxies sometimes exceed 250 (Neeleman et al. 2020) or even 300 km s−1 (Nestor Shachar et al. 2023; Wang et al. 2024), comparable to the most massive local spirals (Noordermeer et al. 2007; Di Teodoro et al. 2021, 2023). That such rapidly rotating galaxies exist at high redshift indicates that there is a lot of mass present, not just light. We can’t just tweak the mass-to-light ratio of the stars to explain the photometry and also explain the kinematics.
In a seminal galaxy formation paper, Mo, Mao, & White (1998) predicted that “present-day disks were assembled recently (at z ≤ 1).” Today, we see that spiral galaxies are ubiquitous in JWST images up to z ∼ 6 (Ferreira et al. 2022, 2023; Kuhn et al. 2024). The early appearance of massive, dynamically cold (Di Teodoro et al. 2016; Lelli et al. 2018, 2023; Rizzo et al. 2023) disks in the first few billion years after the Big Bang is contradictory the natural prediction of ΛCDM. Early disks are expected to be small and dynamically hot (Dekel & Burkert 2014; Zolotov et al. 2015; Krumholz et al. 2018; Pillepich et al. 2019), but they are observed to be massive and dynamically cold. (Hot or cold in this context means a high or low amplitude of the velocity dispersion relative to the rotation speed; the modern Milky Way is cold with σ ~ 20 km/s and Vc ~ 200 km/s.) Understanding the stability and longevity of dynamically cold spiral disks is foundational to the problem.
Kinematic Scaling Relations
Beyond anecdotal cases, we can check on kinematic scaling relations like Tully–Fisher. These are expected to emerge late and evolve significantly with redshift in LCDM (e.g., Glowacki et al. 2021). In MOND, the normalization of the baryonic Tully–Fisher relation is set by a0, so is immutable for all time if a0 is constant. Let’s see what the data say:

Not much to see: the data from Nestor Shachar et al. (2023) show no clear indication of evolution. The same can be said for the dark matter fraction-surface brightness relation. (Glad to see that being plotted after I pointed it out.) The local relations are coincident with those at higher redshift for both relations within any sober assessment of the uncertainties – exactly what we measure and how matters at this level, and I’m not going to attempt to disentangle all that here. Neither am I about to attempt to assess the consistency (or lack thereof) with either LCDM or MOND; the data simply aren’t good enough for that yet. It is also not clear to me that everyone agrees on what LCDM predicts.
What I can do is check empirically how much evolution there is within the 100-galaxy data set of Nestor Shachar et al. (2023). To do that, I fit a line to their data (the left panel above) and measure the residuals: for a given rotation speed, how far is each galaxy from the expected mass? To compare this with the stellar masses discussed previously, I normalize those residuals to the same M** = 9 x 1010 M☉. If there is no evolution, the data will scatter around a constant value as function of redshift:

The data scatter around a constant value as function of redshift: there is no perceptible evolution.
The kinematic data for rotating galaxies tells much the same story as the photometric data for galaxies in clusters. The are both consistent with a monolithic model that gathered together the bulk of the baryonic mass early on, and evolved as an island universe for most of the history of the cosmos. There is no hint of the decline in mass with redshift predicted by the LCDM simulations. Moreover, the kinematics trace mass, not just light. So while I am careful to consider the options for LCDM, I don’t know how we’re gonna get out of this one.
Empirically, it is an important observation that there is no apparent evolution in the baryonic Tully-Fisher relation out to z ~ 2.5. That’s a lookback time of ~11 Gyr, so most of cosmic history. That means that whatever physics sets the relation did so early. If the physics is MOND, this absence of evolution implies that a0 is constant. There is some wiggle room in that given all the uncertainties, but this already excludes the picture in which a0 evolves with the expansion rate through the coincidence a0 ~ cH0. That much evolution would be readily perceptible if H(z) evolves as it appears to do. In contrast, the coincidence a0 ~ c2Λ1/2 remains interesting since the cosmological constant is constant. Perhaps this is just a coincidence, or perhaps it is a hint that the anomalous acceleration of the expansion of the universe is somehow connected with the anomalous acceleration in galaxy dynamics.
Though I see no clear evidence for evolution in Tully-Fisher to date, it remains early days. For example, a very recent paper by Amvrosiadis et al. (2025) does show a hint of evolution in the sense of an offset in the normalization of the baryonic Tully-Fisher relation. This isn’t very significant, being different by less than 2σ; and again we find ourselves in a situation where we need to take a hard look at all the assumptions and population modeling and velocity measurements just to see if we’re talking about the same quantities before we even begin to assess consistency or the lack thereof. Nevertheless, it is an intriguing result. There is also another interesting anecdotal case: one of their highest redshift objects, ALESS 071.1 at z = 3.7, is also the most massive in the sample, with an estimated stellar mass of 2 x 1012 M☉. That is a crazy large number, comparable to or maybe larger than the entire dark matter halo of the Milky Way. It falls off the top of any of the graphs of stellar mass we discussed before. If correct, this one galaxy is an enormous problem for LCDM regardless of any other consideration. It is of course possible that this case will turn out to be wrong for some reason, so it remains early days for kinematics at high redshift.
Cluster Kinematics
It is even earlier days for cluster kinematics. First we have to find them, which was the focus of Jay Franck’s thesis. Once identified, we have to estimate their masses with the available data, which may or may not be up to the task. And of course we have to figure out what theory predicts.
LCDM makes a clear prediction for the growth of cluster mass. This work out OK at low redshift, in the sense that the cluster X-ray mass function is in good agreement with LCDM. Where the theory struggles is in the proclivity for the most massive clusters to appear sooner in cosmic history than anticipated. Like individual galaxies, they appear too big too soon. This trend persisted in Jay’s analysis, which identified candidate protoclusters at higher redshifts than expected. It also measured velocity dispersions that were consistently higher than found in simulations. That is, when Jay applied the search algorithm he used on the data to mock data from the Millennium simulation, the structures identified there had velocity dispersions on average a factor of two lower than seen in the data. That’s a big difference in terms of mass.

At this juncture, there is no way to know if the protocluster candidates Jay identified are or will become bound structures. We made some probability estimates that can be summed up as “some are probably real, but some probably are not.” The relative probability is illustrated by the size of the points in the plot above; the big blue points are the most likely to be real clusters, having at least ten galaxies at the same place on the sky at the same redshift, all with spectroscopically measured redshifts. Here the spectra are critical; photometric redshifts typically are not accurate enough to indicate that galaxies that happen to be nearby to each other on the sky are also that close in redshift space.
The net upshot is that there are at least some good candidate clusters at high redshift, and these have higher velocity dispersions than expected in LCDM. I did the exercise of working out what the equivalent mass in MOND would be, and it is about the same as what we find for clusters at low redshift. This estimate assumes dynamical equilibrium, which is very far from guaranteed. But the time at which these structures appear is consistent with the timescale for cluster formation in MOND (a couple Gyr; z ~ 3), so maybe? Certainly there shouldn’t be lots of massive clusters in LCDM at z ~ 3.
Kinematic Takeaways
While it remains early days for kinematic observations at high redshift, so far these data do nothing to contradict the obvious interpretation of the photometric data. There are mature, dynamically cold, fast rotating spiral galaxies in the early universe that were predicted not to be there by LCDM. Moreover, kinematics traces mass, not just light, so all the wriggling we might try to explain the latter doesn’t help with the former. The most obvious interpretation of the kinematic data to date is the same as that for the photometric data: galaxies formed early and grew massive quickly, as predicted a priori by MOND.
*The papers I write that cover both theories always seem to wind up lopsided in favor of LCDM in terms of the bulk of their content. That happens because it takes many pages to discuss all the ins and outs. In contrast, MOND just gets it right the first time, so that section is short: there’s not much more to say than “Yep, that’s what it predicted.”
+I’ve yet not heard directly any criticisms of our paper. The criticisms that I’ve heard second or third hand so far almost all fall in the category of things we explicitly discussed. That’s a pretty clear tell that the person leveling the critique hasn’t bothered to read it. I don’t expect everyone to agree with our take on this or that, but a competent critic would at least evince awareness that we had addressed their concern, even if not to their satisfaction. We rarely seem to reach that level: it is much easier to libel and slander than engage with the issues.
The one complaint I’ve heard so far that doesn’t fall in the category of things-we-already-discussed is that we didn’t do hydrodynamic simulations of star formation in molecular gas. That is a red herring. To predict the growth of stellar mass, all we need is a prescription for assembling mass and converting baryons into stars; this is essentially a bookkeeping exercise that can be done analytically. If this were a serious concern, it should be noted that most cosmological hydro-simulations also fail to meet this standard: they don’t resolve star formation, so they typically adopt some semi-empirical (i.e., data-informed) bookkeeping prescription for this “subgrid physics.”
Though I have not myself attempted to numerically simulate galaxy formation in MOND, Sanders (2008) did. More recently, Eappen et al. (2022) have done so, including molecular gas and feedback$ and everything. They find a star formation history compatible with the analytic models we discuss in our paper.

$Related detail: Eappen et al find that different feedback schemes make little difference to the end result. The deus ex machina invoked to solve all problems in LCDM is largely irrelevant in MOND. There’s a good physical reason for this: gravity in MOND is sourced by what you see; how it came to have its observed distribution is irrelevant. If 90% of the baryons are swept entirely out of the galaxy by some intense galactic wind, then they’re gone BYE BYE and don’t matter any more. In contrast, that is one of the scenarios sometimes invoked to form cores in dark matter halos that are initially cuspy: the departure of all those baryons perturbs the orbits of the dark matter particles and rearranges the structure of the halo. While that might work to alter halo structure, how it results in MOND-like phenomenology has never been satisfactorily explained. Mostly that is not seen as even necessary; converting cusp to core is close enough!
&Though we typically associate the observed outer velocity with halo mass, an important caveat is that the radius also matters: M ~ RV2, and most data for high redshift galaxies do not extend very far out in radius. Nevertheless, it takes a lot of mass to make rotation speeds of order 200 km/s within a few kpc, so it hardly matters if this is or is not representative of the dark matter halo: if it is all stars, then the kinematics directly corroborate the interpretation of the photometric data that the stellar mass is large. If it is representative of the dark matter halo, then we expect the halo radius to scale with the halo velocity (R200 ~ V200) so M200 ~ V2003 and again it appears that there is too much mass in place too early.









































