Like the Milky Way, our nearest giant neighbor, Andromeda (aka M31), has several dozen dwarf satellite galaxies. A few of these were known and had measured velocity dispersions at the time of my work with Joe Wolf, as discussed previously. Also like the Milky Way, the number of known objects has grown rapidly in recent years – thanks in this case largely to the PAndAS survey.
PAndAS imaged the area around M31 and M33, finding many individual red giant stars. These trace out the debris from interactions and mergers as small dwarfs are disrupted and consumed by their giant host. They also pointed up the existence of previously unknown dwarf satellites.

As the PAndAS survey started reporting the discovery of new dwarf satellites around Andromeda, it occurred to me that this provided the opportunity to make genuine a priori predictions. These are the gold standard of the scientific method. We could use the observed luminosity and size of the newly discovered dwarfs to predict their velocity dispersions.
I tried to do this for both ΛCDM and MOND. I will not discuss the ΛCDM case much, because it can’t really be done. But it is worth understanding why this is.
In ΛCDM, the velocity dispersion is determined by the dark matter halo. This has only a tenuous connection to the observed stars, so just knowing how big and bright a dwarf is doesn’t provide much predictive power about the halo. This can be seen from this figure by Tollerud et al (2011):

This graph is obtained by relating the number density of galaxies (an observed quantity) to that of the dark matter halos in which they reside (a theoretical construct). It is highly non-linear, deviating strongly from the one-to-one line we expected early on. There is no reason to expect this particular relation; it is imposed on us by the fact that the observed luminosity function of galaxies is rather flat while the predicted halo mass function is steep. Nowadays, this is usually called the missing satellite problem, but this is a misnomer as it pervades the field.
Addressing the missing satellites problem would be another long post, so lets just accept that the relation between mass and light has to follow something like that illustrated above. If a dwarf galaxy has a luminosity of a million suns, one can read off the graph that it should live in a dark halo with a mass of about 1010 M☉. One could use this to predict the velocity dispersion, but not very precisely, because there’s a big range corresponding to that luminosity (the bands in the figure). It could be as much as 1011 M☉ or as little as 109 M☉. This corresponds to a wide range of velocity dispersions. This wide range is unavoidable because of the difference in the luminosity function and halo mass function. Small variations in one lead to big variations in the other, and some scatter in dark halo properties is unavoidable.
Consequently, we only have a vague range of expected velocity dispersions in ΛCDM. In practice, we never make this prediction. Instead, we compare the observed velocity dispersion to the luminosity and say “gee, this galaxy has a lot of dark matter” or “hey, this one doesn’t have much dark matter.” There’s no rigorously testable prior.
In MOND, what you see is what you get. The velocity dispersion has to follow from the observed stellar mass. This is straightforward for isolated galaxies: M* ∝ σ4 – this is essentially the equivalent of the Tully-Fisher relation for pressure supported systems. If we can estimate the stellar mass from the observed luminosity, the predicted velocity dispersion follows.
Many dwarf satellites are not isolated in the MONDian sense: they are subject to the external field effect (EFE) from their giant hosts. The over-under for whether the EFE applies is the point when the internal acceleration from all the stars of the dwarf on each other is equal to the external acceleration from orbiting the giant host. The amplitude of the discrepancy in MOND depends on how low the total acceleration is relative to the critical scale a0. The external field in effect adds some acceleration that wouldn’t otherwise be there, making the discrepancy less than it would be for an isolated object. This means that two otherwise identical dwarfs may be predicted to have different velocity dispersions is they are or are not subject to the EFE. This is a unique prediction of MOND that has no analog in ΛCDM.
It is straightforward to derive the equation to predict velocity dispersions in the extreme limits of isolated (aex ≪ ain < a0) or EFE dominated (ain ≪ aex < a0) objects. In reality, there are many objects for which ain ≈ aex, and no simple formula applies. In practice, we apply the formula that more nearly applies, and pray that this approximation is good enough.
There are many other assumptions and approximations that must be made in any theory: that an object is spherical, isotropic, and in dynamical equilibrium. All of these must fail at some level, but it is the last one that is the most serious concern. In the case of the EFE, one must also make the approximation that the object is in equilibrium at the current level of the external field. That is never true, as both the amplitude and the vector of the external field vary as a dwarf orbits its host. But it might be an adequate approximation if this variation is slow. In the case of a circular orbit, only the vector varies. In general the orbits are not known, so we make the instantaneous approximation and once again pray that it is good enough. There is a fairly narrow window between where the EFE becomes important and where we slip into the regime of tidal disruption, but lets plow ahead and see how far we can get, bearing in mind that the EFE is a dynamical variable of which we only have a snapshot.
To predict the velocity dispersion in the isolated case, all we need to know is the luminosity and a stellar mass-to-light ratio. Assuming the dwarfs of Andromeda to be old stellar populations, I adopted a V-band mass-to-light ratio of 2 give or take a factor of 2. That usually dominates the uncertainty, though the error in the distance can sometimes impact the luminosity at a level that impacts the prediction.
To predict the velocity dispersion in the EFE case, we again need the stellar mass, but now also need to know the size of the stellar system and the intensity of the external field to which it is subject. The latter depends on the mass of the host galaxy and the distance from it to the dwarf. This latter quantity is somewhat fraught: it is straightforward to measure the projected distance on the sky, but we need the 3D distance – how far in front or behind each dwarf is as well as its projected distance from the host. This is often a considerable contributor to the error budget. Indeed, some dwarfs may be inferred to be in the EFE regime for the low end of the range of adopted stellar mass-to-light ratio, and the isolated regime for the high end.
In this fashion, we predicted velocity dispersions for the dwarfs of Andromeda. We in this case were Milgrom and myself. I had never collaborated with him before, and prefer to remain independent. But I also wanted to be sure I got the details described above right. Though it wasn’t much work to make the predictions once the preliminaries were established, it was time consuming to collect and vet the data. As we were writing the paper, velocity dispersion measurements started to appear. People like Michelle Collins, Erik Tollerud, and Nicolas Martin were making follow-up observations, and publishing velocity dispersion for the objects we were making predictions for. That was great, but they were too good – they were observing and publishing faster than we could write!
Nevertheless, we managed to make and publish a priori predictions for 10 dwarfs before any observational measurements were published. We also made blind predictions for the other known dwarfs of Andromeda, and checked the predicted velocity dispersions against all measurements that we could find in the literature. Many of these predictions were quickly tested by on-going programs (i.e., people were out to measure velocity dispersions, whether we predicted them or not). Enough data rolled in that we were soon able to write a follow-up paper testing our predictions.
Nailed it. Good data were soon available to test the predictions for 8 of the 10* a priori cases. All 8 were consistent with our predictions. I was particularly struck by the case of And XXVIII, which I had called out as perhaps the best test. It was isolated, so the messiness of the EFE didn’t apply, and the uncertainties were low. Moreover, the predicted velocity dispersion was low – a good deal lower than broadly expected in ΛCDM: 4.3 km/s, with an uncertainty just under 1 km/s. Two independent observations were subsequently reported. One found 4.9 ± 1.6 km/s, the other 6.6 ± 2.1 km/s, both in good agreement within the uncertainties.
We made further predictions in the second paper as people had continued to discover new dwarfs. These also came true. Here is a summary plot for all of the dwarfs of Andromeda:

MOND works well for And I, And II, And III, And VI, And VII, And IX, And X, And XI, And XII, And XIII, And XIV, And XV, And XVI, And XVII, And XVIII, And XIX, And XX, And XXI, And XXII, And XXIII, And XXIV, And XXV, And XXVIII, And XXIX, And XXXI, And XXXII, and And XXXIII. There is one problematic case: And V. I don’t know what is going on there, but note that systematic errors frequently happen in astronomy. It’d be strange if there weren’t at least one goofy case.
Nevertheless, the failure of And V could be construed as a falsification of MOND. It ought to work in every single case. But recall the discussion of assumptions and uncertainties above. Is falsification really the story these data tell?
We do have experience with various systematic errors. For example, we predicted that the isolated dwarfs spheroidal Cetus should have a velocity dispersion in MOND of 8.2 km/s. There was already a published measurement of 17 ± 2 km/s, so we reported that MOND was wrong in this case by over 3σ. Or at least we started to do so. Right before we submitted that paper, a new measurement appeared: 8.3 ± 1 km/s. This is an example of how the data can sometimes change by rather more than the formal error bars suggest is possible. In this case, I suspect the original observations lacked the spectral resolution to resolve the velocity dispersion. At any rate, the new measurement (8.3 km/s) was somewhat more consistent with our prediction (8.2 km/s).
The same predictions cannot even be made in ΛCDM. The velocity data can always be fit once they are in hand. But there is no agreed method to predict the velocity dispersion of a dwarf from its observed luminosity. As discussed above, this should not even be possible: there is too much scatter in the halo mass-stellar mass relation at these low masses.
An unsung predictive success of MOND absent from the graph above is And IV. When And IV was discovered in the general direction of Andromeda, it was assumed to be a new dwarf satellite – hence the name. Milgrom looked at the velocities reported for this object, and said it had to be a background galaxy. No way it could be a dwarf satellite – at least not in MOND. I see no reason why it couldn’t have been in ΛCDM. It is absent from the graph above, because it was subsequently confirmed to be much farther away (7.2 Mpc vs. 750 kpc for Andromeda).
The box for And XVII is empty because this system is manifestly out of equilibrium. It is more of a stellar stream than a dwarf, appearing as a smear in the PAndAS image rather than as a self-contained dwarf. I do not recall what the story with the other missing object (And VIII) is.
While writing the follow-up paper, I also noticed that there were a number of Andromeda dwarfs that were photometrically indistinguishable: basically the same in terms of size and stellar mass. But some were isolated while others were subject to the EFE. MOND predicts that the EFE cases should have lower velocity dispersion than the isolated equivalents.

And XXVIII (isolated) has a higher velocity dispersion than its near-twin And XVII (EFE). The same effect might be acting in And XVIII (isolated) and And XXV (EFE). This is clear if we accept the higher velocity dispersion measurement for And XVIII, but an independent measurements begs to differ. The former has more stars, so is probably more reliable, but we should be cautious. The effect is not clear in And XVI (isolated) and And XXI (EFE), but the difference in the prediction is small and the uncertainties are large.
An aggressive person might argue that the pairs of dwarfs is a positive detection of the EFE. I don’t think the data for the matched pairs warrant that, at least not yet. On the other hand, the appropriate use of the EFE was essential to all the predictions, not just the matched pairs.
The positive detection of the EFE is important, as it is a unique prediction of MOND. I see no way to tune ΛCDM galaxy simulations to mimic this effect. Of course, there was a very recent time when it seemed impossible for them to mimic the isolated predictions of MOND. They claim to have come a long way in that regard.
But that’s what we’re stuck with: tuning ΛCDM to make it look like MOND. This is why a priori predictions are important. There is ample flexibility to explain just about anything with dark matter. What we can’t seem to do is predict the same things that MOND successfully predicts… predictions that are both quantitative and very specific. We’re not arguing that dwarfs in general live in ~15 or 30 km/s halos, as we must in ΛCDM. In MOND we can say this dwarf will have this velocity dispersion and that dwarf will have that velocity dispersion. We can distinguish between 4.9 and 7.3 km/s. And we can do it over and over and over. I see no way to do the equivalent in ΛCDM, just as I see no way to explain the acoustic power spectrum of the CMB in MOND.
This is not to say there are no problematic cases for MOND. Read, Walker, & Steger have recently highlighted the matched pair of Draco and Carina as an issue. And they are – though here I already have reason to suspect Draco is out of equilibrium, which makes it challenging to analyze. Whether it is actually out of equilibrium or not is a separate question.
I am not thrilled that we are obliged to invoke non-equilibrium effects in both theories. But there is a difference. Brada & Milgrom provided a quantitative criterion to indicate when this was an issue before I ran into the problem. In ΛCDM, the low velocity dispersions of objects like And XIX, XXI, XXV and Crater 2 came as a complete surprise despite having been predicted by MOND. Tidal disruption was only invoked after the fact – and in an ad hoc fashion. There is no way to know in advance which dwarfs are affected, as there is no criterion equivalent to that of Brada. We just say “gee, that’s a low velocity dispersion. Must have been disrupted.” That might be true, but it gives no explanation for why MOND predicted it in the first place – which is to say, it isn’t really an explanation at all.
I still do not understand is why MOND gets any predictions right if ΛCDM is the universe we live in, let alone so many. Shouldn’t happen. Makes no sense.
If this doesn’t confuse you, you are not thinking clearly.
*The other two dwarfs were also measured, but with only 4 stars in one and 6 in the other. These are too few for a meaningful velocity dispersion measurement.