In order to agree on an interpretation, we first have to agree on the facts. Even when we agree on the facts, the available set of facts may admit multiple interpretations. This was an obvious and widely accepted truth early in my career*. Since then, the field has decayed into a haphazardly conceived set of unquestionable absolutes that are based on a large but well-curated subset of facts that gratuitously ignores any subset of facts that are inconvenient.
Sadly, we seem to have entered a post-truth period in which facts are drowned out by propaganda. I went into science to get away from people who place faith before facts, and comfortable fictions ahead of uncomfortable truths. Unfortunately, a lot of those people seem to have followed me here. This manifests as people who quote what are essentially pro-dark matter talking points at me like I don’t understand LCDM, when all it really does is reveal that they are posers** who picked up on some common myths about the field without actually reading the relevant journal articles.
Indeed, a recent experience taught me a new psychology term: identity protective cognition. Identity protective cognition is the tendency for people in a group to selectively credit or dismiss evidence in patterns that reflect the beliefs that predominate in their group. When it comes to dark matter, the group happens to be a scientific one, but the psychology is the same: I’ve seen people twist themselves into logical knots to protect their belief in dark matter from being subject to critical examination. They do it without even recognizing that this is what they’re doing. I guess this is a human foible we cannot escape.
I’ve addressed these issues before, but here I’m going to start a series of posts on what I think some of the essential but underappreciated facts are. This is based on a talk that I gave at a conference on the philosophy of science in 2019, back when we had conferences, and published in Studies in History and Philosophy of Science. I paid the exorbitant open access fee (the journal changed its name – and publication policy – during the publication process), so you can read the whole thing all at once if you are eager. I’ve already written it to be accessible, so mostly I’m going to post it here in what I hope are digestible chunks, and may add further commentary if it seems appropriate.
Cosmic context
Cosmology is the science of the origin and evolution of the universe: the biggest of big pictures. The modern picture of the hot big bang is underpinned by three empirical pillars: an expanding universe (Hubble expansion), Big Bang Nucleosynthesis (BBN: the formation of the light elements through nuclear reactions in the early universe), and the relic radiation field (the Cosmic Microwave Background: CMB) (Harrison, 2000; Peebles, 1993). The discussion here will take this framework for granted.
The three empirical pillars fit beautifully with General Relativity (GR). Making the simplifying assumptions of homogeneity and isotropy, Einstein’s equations can be applied to treat the entire universe as a dynamical entity. As such, it is compelled either to expand or contract. Running the observed expansion backwards in time, one necessarily comes to a hot, dense, early phase. This naturally explains the CMB, which marks the transition from an opaque plasma to a transparent gas (Sunyaev and Zeldovich, 1980; Weiss, 1980). The abundances of the light elements can be explained in detail with BBN provided the universe expands in the first few minutes as predicted by GR when radiation dominates the mass-energy budget of the universe (Boesgaard & Steigman, 1985).
The marvelous consistency of these early universe results with the expectations of GR builds confidence that the hot big bang is the correct general picture for cosmology. It also builds overconfidence that GR is completely sufficient to describe the universe. Maintaining consistency with modern cosmological data is only possible with the addition of two auxiliary hypotheses: dark matter and dark energy. These invisible entities are an absolute requirement of the current version of the most-favored cosmological model, ΛCDM. The very name of this model is born of these dark materials: Λ is Einstein’s cosmological constant, of which ‘dark energy’ is a generalization, and CDM is cold dark matter.
Dark matter, on the other hand, plays an intimate and essential role in galaxy formation. The term ‘dark matter’ is dangerously crude, as it can reasonably be used to mean anything that is not seen. In the cosmic context, there are at least two forms of unseen mass: normal matter that happens not to glow in a way that is easily seen — not all ordinary material need be associated with visible stars — and non-baryonic cold dark matter. It is the latter form of unseen mass that is thought to dominate the mass budget of the universe and play a critical role in galaxy formation.
Cold Dark Matter
Cold dark matter is some form of slow moving, non-relativistic (‘cold’) particulate mass that is not composed of normal matter (baryons). Baryons are the family of particles that include protons and neutrons. As such, they compose the bulk of the mass of normal matter, and it has become conventional to use this term to distinguish between normal, baryonic matter and the non-baryonic dark matter.
The distinction between baryonic and non-baryonic dark matter is no small thing. Non-baryonic dark matter must be a new particle that resides in a new ‘dark sector’ that is completely distinct from the usual stable of elementary particles. We do not just need some new particle, we need one (or many) that reside in some sector beyond the framework of the stubbornly successful Standard Model of particle physics. Whatever the solution to the mass discrepancy problem turns out to be, it requires new physics.
The cosmic dark matter must be non-baryonic for two basic reasons. First, the mass density of the universe measured gravitationally (Ωm ≈ 0.3, e.g., Faber and Gallagher, 1979; Davis et al., 1980, 1992) clearly exceeds the mass density in baryons as constrained by BBN (Ωb ≈ 0.05, e.g., Walker et al., 1991). There is something gravitating that is not ordinary matter: Ωm > Ωb.
The second reason follows from the absence of large fluctuations in the CMB (Peebles and Yu, 1970; Silk, 1968; Sunyaev and Zeldovich, 1980). The CMB is extraordinarily uniform in temperature across the sky, varying by only ~ 1 part in 105 (Smoot et al., 1992). These small temperature variations correspond to variations in density. Gravity is an attractive force; it will make the rich grow richer. Small density excesses will tend to attract more mass, making them larger, attracting more mass, and leading to the formation of large scale structures, including galaxies. But gravity is also a weak force: this process takes a long time. In the long but finite age of the universe, gravity plus known baryonic matter does not suffice to go from the initially smooth, highly uniform state of the early universe to the highly clumpy, structured state of the local universe (Peebles, 1993). The solution is to boost the process with an additional component of mass — the cold dark matter — that gravitates without interacting with the photons, thus getting a head start on the growth of structure while not aggravating the amplitude of temperature fluctuations in the CMB.
Taken separately, one might argue away the need for dark matter. Taken together, these two distinct arguments convinced nearly everyone, including myself, of the absolute need for non-baryonic dark matter. Consequently, CDM became established as the leading paradigm during the 1980s (Peebles, 1984; Steigman and Turner, 1985). The paradigm has snowballed since that time, the common attitude among cosmologists being that CDM has to exist.
From an astronomical perspective, the CDM could be any slow-moving, massive object that does not interact with photons nor participate in BBN. The range of possibilities is at once limitless yet highly constrained. Neutrons would suffice if they were stable in vacuum, but they are not. Primordial black holes are a logical possibility, but if made of normal matter, they must somehow form in the first second after the Big Bang to not impair BBN. At this juncture, microlensing experiments have excluded most plausible mass ranges that primordial black holes could occupy (Mediavilla et al., 2017). It is easy to invent hypothetical dark matter candidates, but difficult for them to remain viable.
From a particle physics perspective, the favored candidate is a Weakly Interacting Massive Particle (WIMP: Peebles, 1984; Steigman and Turner, 1985). WIMPs are expected to be the lightest stable supersymmetric partner particle that resides in the hypothetical supersymmetric sector (Martin, 1998). The WIMP has been the odds-on favorite for so long that it is often used synonymously with the more generic term ‘dark matter.’ It is the hypothesized particle that launched a thousand experiments. Experimental searches for WIMPs have matured over the past several decades, making extraordinary progress in not detecting dark matter (Aprile et al., 2018). Virtually all of the parameter space in which WIMPs had been predicted to reside (Trotta et al., 2008) is now excluded. Worse, the existence of the supersymmetric sector itself, once seemingly a sure thing, remains entirely hypothetical, and appears at this juncture to be a beautiful idea that nature declined to implement.
In sum, we must have cold dark matter for both galaxies and cosmology, but we have as yet no clue to what it is.
* There is a trope that late in their careers, great scientists come to the opinion that everything worth discovering has been discovered, because they themselves already did everything worth doing. That is not a concern I have – I know we haven’t discovered all there is to discover. Yet I see no prospect for advancing our fundamental understanding simply because there aren’t enough of us pulling in the right direction. Most of the community is busy barking up the wrong tree, and refuses to be distracted from their focus on the invisible squirrel that isn’t there.
** Many of these people are the product of the toxic culture that Simon White warned us about. They wave the sausage of galaxy formation and feedback like a magic wand that excuses all faults while being proudly ignorant of how the sausage was made. Bitch, please. I was there when that sausage was made. I helped make the damn sausage. I know what went into it, and I recognize when it tastes wrong.
There is a rule of thumb in scientific publication that if a title is posed a question, the answer is no.
It sucks being so far ahead of the field that I get to watch people repeat the mistakes I made (or almost made) and warned against long ago. There have been persistent claims of deviations of one sort or another from the Baryonic Tully-Fisher relation (BTFR). So far, these have all been obviously wrong, for reasons we’ve discussed before. It all boils down to data quality. The credibility of data is important, especially in astronomy.
Baryonic mass (stars plus gas) as a function of the rotation speed measured at the outermost detected radius.
A relation is clear in the plot above, but it’s a mess. There’s lots of scatter, especially at low mass. There is also a systematic tendency for low mass galaxies to fall to the left of the main relation, appearing to rotate too slowly for their mass.
There is no quality control in the plot above. I have thrown all the mud at the wall. Let’s now do some quality control. The plotted quantities are the baryonic mass and the flat rotation speed. We haven’t actually measured the flat rotation speed in all these cases. For some, we’ve simply taken the last measured point. This was an issue we explicitly pointed out in Stark et al (2009):
Fig. 1 from Stark et al (2009): Examples of rotation curves (Swaters et al. 2009) that do and do not satisfy the flatness criterion. The rotation curve of UGC 4173 (top) rises continuously and does not meet the flatness criterion. UGC 5721 (center) is an ideal case with clear flattening of the rotational velocity. UGC 4499 marginally satisfies the flatness criterion.
If we include a galaxy like UGC 4173, we expect it will be offset to the low velocity side because we haven’t measured the flat rotation speed. We’ve merely taken that last point and hoped it is close enough. Sometimes it is, depending on your tolerance for systematic errors. But the plain fact is that we haven’t measured the flat rotation speed in this case. We don’t even know if it has one; it is only empirical experience with other examples that lead us to expect it to flatten if we manage to observe further out.
For our purpose here, it is as if we hadn’t measured this galaxy at all. So let’s not pretend like we have, and restrict the plot to galaxies for which the flat velocity is measured:
The same as the first plot, restricted to galaxies for which the flat rotation speed has been measured.
The scatter in the BTFR decreases dramatically when we exclude the galaxies for which we haven’t measured the relevant quantities. This is a simple matter of data quality. We’re no longer pretending to have measured a quantity that we haven’t measured.
There are still some outliers as there are still things that can go wrong. Inclinations are a challenge for some galaxies, as are distances determinations. Remember that Tully-Fisher was first employed as a distance indicator. If we look at the plot above from that perspective, the outliers have obviously been assigned the wrong distance, and we would assign a new one by putting them on the relation. That, in a nutshell, is how astronomical distance indicators work.
If we restrict the data to those with accurate measurements, we get
Same as the plot above, restricted to galaxies for which the quantities measured on both axes have been measured to an accuracy of 20% or better.
Now the outliers are gone. They were outliers because they had crappy data. This is completely unsurprising. Some astronomical data are always crappy. You plot crap against crap, you get crap. If, on the other hand, you look at the high quality data, you get a high quality correlation. Even then, you can never be sure that you’ve excluded all the crap, as there are often unknown unknowns – systematic errors you don’t know about and can’t control for.
We have done the exercise of varying the tolerance limits on data quality many times. We have shown that the scatter varies as expected with data quality. If we consider high quality data, we find a small scatter in the BTFR. If we consider low quality data, we get to plot more points, but the scatter goes up. You can see this by eye above. We can quantify this, and have. The amount of scatter varies as expected with the size of the uncertainties. Bigger errors, bigger scatter. Smaller errors, smaller scatter. This shouldn’t be hard to understand.
So why do people – many of them good scientists – keep screwing this up?
There are several answers. One is that measuring the flat rotation speed is hard. We have only done it for a couple hundred galaxies. This seems like a tiny number in the era of the Sloan Digitial Sky Survey, which enables any newbie to assemble a sample of tens of thousands of galaxies… with photometric data. It doesn’t provide any kinematic data. Measuring the stellar mass with the photometric data doesn’t do one bit of good for this problem if you don’t have the kinematic axis to plot against. Consequently, it doesn’t matter how big such a sample is.
You have zero data.
Other measurements often provide a proxy measurement that seems like it ought to be close enough to use. If not the flat rotation speed, maybe you have a line width or a maximum speed or V2.2 or the hybrid S0.5 or some other metric. That’s fine, so long as you recognize you’re plotting something different so should expect to get something different – not the BTFR. Again, we’ve shown that the flat rotation speed is the measure that minimizes the scatter; if you utilize some other measure you’re gonna get more scatter. That may be useful for some purposes, but it only tells you about what you measured. It doesn’t tell you anything about the scatter in the BTFR constructed with the flat rotation speed if you didn’t measure the flat rotation speed.
Another possibility is that there exist galaxies that fall off the BTFR that we haven’t observed yet. It is a big universe, after all. This is a known unknown unknown: we know that we don’t know if there are non-conforming galaxies. If the relation is indeed absolute, then we never can find any, but never can we know that they don’t exist, only that we haven’t yet found any credible examples.
I’ve addressed the possibility of nonconforming galaxies elsewhere, so all I’ll say here is that I have spent my entire career seeking out the extremes in galaxy properties. Many times I have specifically sought out galaxies that should deviate from the BTFR for some clear reason, only to be surprised when they fall bang on the BTFR. Over and over and over again. It makes me wonder how Vera Rubin felt when her observations kept turning up flat rotation curves. Shouldn’t happen, but it does – over and over and over again. So far, I haven’t found any credible deviations from the BTFR, nor have I seen credible cases provided by others – just repeated failures of quality control.
Finally, an underlying issue is often – not always, but often – an obsession with salvaging the dark matter paradigm. That’s hard to do if you acknowledge that the observed BTFR – its slope, normalization, lack of scale length residuals, negligible intrinsic scatter; indeed, the very quantities that define it, were anticipated and explicitly predicted by MOND and only MOND. It is easy to confirm the dark matter paradigm if you never acknowledge this to be a problem. Often, people redefine the terms of the issue in some manner that is more tractable from the perspective of dark matter. From that perspective, neither the “cold” baryonic mass nor the flat rotation speed have any special meaning, so why even consider them? That is the road to MONDness.
The last post was basically an introduction to this one, which is about the recent work of Pengfei Li. In order to test a theory, we need to establish its prior. What do we expect?
The prior for fully formed galaxies after 13 billion years of accretion and evolution is not an easy problem. The dark matter halos need to form first, with the baryonic component assembling afterwards. We know from dark matter-only structure formation simulations that the initial condition (A) of the dark matter halo should resemble an NFW halo, and from observations that the end product of baryonic assembly needs to look like a real galaxy (Z). How the universe gets from A to Z is a whole alphabet of complications.
The simplest thing we can do is ignore B-Y and combine a model galaxy with a model dark matter halo. The simplest model for a spiral galaxy is an exponential disk. True to its name, the azimuthally averaged stellar surface density falls off exponentially from a central value over some scale length. This is a tolerable approximation of the stellar disks of spiral galaxies, ignoring their central bulges and their gas content. It is an inadequate yet surprisingly decent starting point for describing gravitationally bound collections of hundreds of billions of stars with just two parameters.
So a basic galaxy model is an exponential disk in an NFW dark matter halo. This is they type of model I discussed in the last post, the kind I was considering two decades ago, and the kind of model still frequently considered. It is an obvious starting point. However, we know that this starting point is not adequate. On the baryonic side, we should model all the major mass components: bulge, disk, and gas. On the halo side, we need to understand how the initial halo depends on its assembly history and how it is modified by the formation of the luminous galaxy within it. The common approach to do all that is to run a giant cosmological simulation and watch what happens. That’s great, provided we know how to model all the essential physics. The action of gravity in an expanding universe we can compute well enough, but we do not enjoy the same ability to calculate the various non-gravitational effects of baryons.
Rather than blindly accept the outcome of simulations that have become so complicated that no one really seems to understand them, it helps to break the problem down into its basic steps. There is a lot going on, but what we’re concerned about here boils down to a tug of war between two competing effects: adiabatic compression tends to concentrate the dark matter, while feedback tends to redistribute it outwards.
Adiabatic compression refers to the response of the dark matter halo to infalling baryons. Though this name stuck, the process isn’t necessarily adiabatic, and the A-word word tends to blind people to a generic and inevitable physical process. As baryons condense into the centers of dark matter halos, the gravitational potential is non-stationary. The distribution of dark matter has to respond to this redistribution of mass: the infall of dissipating baryons drags some dark matter in with them, so we expect dark matter halos to become more centrally concentrated. The most common approach to computing this effect is to assume the process is adiabatic (hence the name). This means a gentle settling that is gradual enough to be time-reversible: you can imagine running the movie backwards, unlike a sudden, violent event like a car crash. It needn’t be rigorously adiabatic, but the compressive response of the halo is inevitable. Indeed, forming a thin, dynamically cold, well-organized rotating disk in a preferred plane – i.e., a spiral galaxy – pretty much requires a period during which the adiabatic assumption is a decent approximation. There is a history of screwing up even this much, but Jerry Sellwood showed that it could be done correctly and that when one does so, it reproduces the results of more expensive numerical simulations. This provides a method to go beyond a simple exponential disk in an NFW halo: we can compute what happens to an NFW halo in response to an observed mass distribution.
After infall and compression, baryons form stars that produce energy in the form of radiation, stellar winds, and the blast waves of supernova explosions. These are sources of energy that complicate what until now has been a straightforward calculation of gravitational dynamics. With sufficient coupling to the surrounding gas, these energy sources might be converted into enough kinetic energy to alter the equilibrium mass distribution and the corresponding gravitational potential. I say might because we don’t really know how this works, and it is a lot more complicated than I’ve made it sound. So let’s not go there, and instead just calculate the part we do know how to calculate. What happens from the inevitable adiabatic compression in the limit of zero feedback?
We have calculated this for a grid of model galaxies that matches the observed distribution or real galaxies. This is important; it often happens that people do not explore a realistic parameter space. Here is a plot of size against stellar mass:
The size of galaxy disks as measured by the exponential scale length as a function of stellar mass. Grey points are real galaxies; red circles are model galaxies with parameters chosen to cover the same parameter space. This, and all plots, from Li et al. (2022).
Note that at a given stellar mass, there is a wide range of sizes. This is an essential aspect of galaxy properties; one has to explain size variations as well as the trend with mass. This obvious point has been frequently forgotten and rediscovered in the literature.
The two parameter plot above only suffices to approximate the stellar disks of spiral and irregular galaxies. Real galaxies have bulges and interstellar gas. We include these in our models so that they cover the same distribution as real galaxies in terms of bulge mass, size, and gas fraction. We then assign a dark matter halo to each model galaxy using an abundance matching relation (the stellar mass tells us the halo mass) and adopt the cosmologically appropriate halo mass-concentration relation. These specify the initial condition of the NFW halo in which each model galaxy is presumed to reside.
At this point, it is worth remarking that there are a variety of abundance matching relations in the literature. Some of these give tragically bad predictions for the kinematics. I won’t delve into this here, but do want to note that in what follows, we have adopted the most favorable abundance matching relation, which turns out to be that of Kravstov et al. (2018). Note that this means that we are already engaged in a kind of fine-tuning by cherry-picking the most favorable relation.
Before considering adiabatic compression, let’s see what happens if we simply add our model galaxies to NFW halos. This is the same exercise we did last time with exponential disks; now we’re including bulges and gas:
Galaxy models in the RAR plane. Models are color coded by their stellar surface density. The dotted line is 1:1 (Newton with no dark matter or other funny business). The black line is the fit to the observed RAR.
This looks pretty good, at least at a first glance. Most of the models fall nearly on top of each other. This isn’t entirely true, as the most massive models overpredict the RAR. This is a generic consequence of the bend in abundance matching relations. This bend is mildest in the Kravtsov relation, which is what makes it “best” here – other relations, like the commonly cited one of Behroozi, predict a lot more high-acceleration models. One sees only a hint of that here.
The scatter is respectably small, mostly solving the problem I initially encountered in the nineties. Despite predicting a narrow relation, the models do have a finite scatter that is a bit more than we observe. This isn’t too tragic, so maybe we can work with it. These models also miss the low acceleration end of the relation by a modest but appreciable amount. This seems more significant, as we found the same thing for pure exponential models: it is hard to make this part of the problem go away.
Including bulges in the models extends them to high accelerations. This would seem to explain a region of the RAR that pure exponential models do not address. Bulges are high surface density, star dominated regions, so they fall on the 1:1 part of the RAR at high accelerations.
And then there are the hooks. These are obvious in the plot above. They occur in low and intermediate mass galaxies that lack a significant bulge component. A pure exponential disk has a peak acceleration at finite radius, but an NFW halo has its peak at zero radius. So if you imagine following a given model line inwards in radius, it goes up in acceleration until it reaches the maximum for the disk along the x-axis. The baryonic component of the acceleration then starts to decline while that due to the NFW halo continues to rise. The model doubles back to lower baryonic acceleration while continuing to higher total acceleration, making the little hook shape. This deviation from the RAR is not commonly observed; indeed, these hooks are the signature of the cusp-core problem in the RAR plane.
Results so far are mixed. With the “right” choice of abundance matching relation, we are well ahead of where we were at the turn of the century, but some real problems remain. We have yet to compute the necessary adiabatic contraction, so hopefully doing that right will result in further improvement. So let’s make a rigorous calculation of the compression that would result from forming a galaxy of the stipulated parameters.
Galaxy models in the RAR plane after compression.
Adiabatic compression makes things worse. There is a tiny improvement at low accelerations, but the most pronounced effects are at small radii where accelerations are large. Compression makes cuspy halos cuspier, making the hooks more pronounced. Worse, the strong concentration of starlight that is a bulge inevitably leads to strong compression. These models don’t approach the 1:1 line at high acceleration, and never can: higher acceleration means higher stellar surface density means greater compression. One cannot start from an NFW halo and ever reach a state of baryon domination; too much dark matter is always in the mix.
It helps to look at the residual diagram. The RAR is a log-log plot over a large dynamic range; this can hide small but significant deviations. For some reason, people who claim to explain the RAR with dark matter models never seem to show these residuals.
As above, with the observed RAR divided out. Model galaxies are mostly above the RAR. The cusp-core problem is exacerbated in disks, and bulges never reach the 1:1 line at high accelerations.
The models built to date don’t have the right shape to explain the RAR, at least when examined closely. Still, I’m pleased: what we’ve done here comes closer than all my many previous efforts, and most of the other efforts that are out there. Still, I wouldn’t claim it as a success. Indeed, the inevitable compressive effects that occur at high surface densities means that we can’t invoke simple offsets to accommodate the data: if a model gets the shape of the RAR right but the normalization wrong, it doesn’t work to simply shift it over.
So, where does that leave us? Up the proverbial creek? Perhaps. We have yet to consider feedback, which is too complicated to delve into here. Instead, while we haven’t engaged in any specific fine-tuning, we have already engaged in some cherry picking. First, we’ve abandoned the natural proportionality between halo and disk mass, replacing it with abundance matching. This is no small step, as it converts a single-valued parameter of our theory to a rolling function of mass. Abundance matching has become familiar enough that people seemed to be lulled into thinking this is natural. There is nothing natural about it. Regardless of how much fancy jargon we use to justify it, it’s still basically a rolling fudge factor – the scientific equivalent of a lipstick smothered pig.
Abundance matching does, at least, use data that are independent of the kinematics to set the relation between stellar and halo mass, and it does go in the right direction for the RAR. This only gets us into the right ballpark, and only if we cherry-pick the particular abundance matching relation that we use. So we’re well down the path of tuning whether we realize it or not. Invoking feedback is simply another step along this path.
Feedback is usually invoked in the kinematic context to convert cusps into cores. That could help with the hooks. This kind of feedback is widely thought to affect low and intermediate mass galaxies, or galaxies of a particular stellar to halo mass ratio. Opinions vary a bit, but it is generally not thought to have such a strong effect on massive galaxies. And yet, we find that we need some (second?) kind of feedback for them, as we need to move bulges back onto the 1:1 line in the RAR plane. That’s perhaps related to the cusp-core problem, but it’s also different. Getting bulges right requires a fine-tuned amount of feedback to exactly cancel out the effects of compression. A third distinct place where the models need some help is at low accelerations. This is far from the region where feedback is thought to have much effect at all.
I could go on, and perhaps will in a future post. Point is, we’ve been tuning our feedback prescriptions to match observed facts about galaxies, not computing how we think it really works. We don’t know how to do the latter, and there is no guarantee that our approximations do justice to reality. So on the one hand, I don’t doubt that with enough tinkering this process can be made to work in a model. On the other hand, I do question whether this is how the universe really works.
In the previous post, I related some of the history of the Radial Acceleration Relation (henceforth RAR). Here I’ll discuss some of my efforts to understand it. I’ve spent more time trying to do this in terms of dark matter than pretty much anything else, but I have not published most of those efforts. As I related briefly in this review, that’s because most of the models I’ve considered are obviously wrong. Just because I have refrained from publishing explanations of the RAR that are manifestly incorrect has not precluded others from doing so.
A theory is only as good as its prior. If a theory makes a clear prediction, preferably ahead of time, then we can test it. If it has not done so ahead of time, that’s still OK, if we can work out what it would have predicted without being guided by the data. A good historical example of this is the explanation of the excess perihelion precession of Mercury provided by General Relativity. The anomaly had been known for decades, but the right answer falls out of the theory without input from the data. A more recent example is our prediction of the velocity dispersions of the dwarf satellites of Andromeda. Some cases were genuine a priori predictions, but even in the cases that weren’t, the prediction is what it is irrespective of the measurement.
Dark matter-based explanations of the RAR do not fall in either category. They have always chased the data and been informed by it. This has been going on for so long that new practitioners have entered field unaware of the extent to which the simulations they inherited had already been informed by the data. They legitimately seem to think that there has been no fine-tuning of the models because they weren’t personally present for every turn of the knob.
So let’s set the way-back machine. I became concerned about fine-tuning problems in the context of galaxy dynamics when I was trying to explain the Tully-Fisher relation of low surface brightness galaxies in the mid-1990s. This was before I was more than dimly aware that MOND existed, much less taken it seriously. Many of us were making earnest efforts to build proper galaxy formation theories at the time (e.g., Mo, McGaugh, & Bothun 1994, Dalcanton, Spergel, & Summers 1997; Mo, Mao, & White 1998 [MMW]; McGaugh & de Blok 1998), though of course these were themselves informed by observations to date. My own paper had started as an effort to exploit the new things we had discovered about low surface brightness galaxies to broaden our conventional theory of galaxy formation, but over the course of several years, turned into a falsification of some of the ideas I had considered in my 1992 thesis. Dalcanton’s model evolved from one that predicted a shift in Tully-Fisher (as mine had) to one that did not (after the datasaid no). It may never be possible to completely separate theoretical prediction from concurrent data, but it is possible to ask what a theory plausibly predicts. What is the LCDM prior for the RAR?
In order to do this, we need to predict both the baryon distribution (gbar) and that of the dark matter (gobs-gbar). Unfortunately, nobody seems to really agree on what LCDM predicts for galaxies. There seems to be a general consensus that dark matter halos should start out with the NFW form, but opinions vary widely about whether and how this is modified during galaxy formation. The baryonic side of the issue is simply seen as a problem.
That there is no clear prediction is in itself a problem. I distinctly remember expressing my concerns to Martin Rees while I was still a postdoc. He said not to worry; galaxies were such non-linear entities that we shouldn’t be surprised by anything they do. This verbal invocation of a blanket dodge for any conceivable observation did not inspire confidence. Since then, I’ve heard that excuse repeated by others. I have lost count of the number of more serious, genuine, yet completely distinct LCDM predictions I have seen, heard, or made myself. Many dozens, at a minimum; perhaps hundreds at this point. Some seem like they might work but don’t while othersdon’t even cross the threshold of predicting both axes of the RAR. There is no coherent picture that adds up to an agreed set of falsifiable predictions. Individual models can be excluded, but not the underlying theory.
To give one example, let’s consider the specific model of MMW. I make this choice here for two reasons. One, it is a credible effort by serious workers and has become a touchstone in the field, to the point that a sizeable plurality of practitioners might recognize it as a plausible prior – i.e., the closest thing we can hope to get to a legitimate, testable prior. Two, I recently came across one of my many unpublished attempts to explain the RAR which happens to make use of it. Unix says that the last time I touched these files was nearly 22 years ago, in 2000. The postscript generated then is illegible now, so I have to update the plot:
The prediction of MMW (lines) compared to data (points). Each colored line represents a model galaxy of a given mass. Different lines of the same color represent models with different disk scale lengths, as galaxies of the same mass exist over a range of sizes. Models are only depicted over the range of radii typically observed in real galaxies.
At first glance, this might look OK. The trend is at least in the right direction. This is not a success so much as it is an inevitable consequence of the fact that the observed acceleration includes the contribution of the baryons. The area below the dashed line is excluded, as it is impossible to have gobs < gbar. Moreover, since gobs = gbar+gDM, some correlation in this plane is inevitable. Quite a lot, if baryons dominate, as they always seem to do at high accelerations. Not that these models explain the high acceleration part of the RAR, but I’ll leave that detail for later. For now, note that this is a log-log plot. That the models miss the data a little to the eye translates to a large quantitative error. Individual model galaxies sometimes fall too high, sometimes too low: the model predicts considerably more scatter than is observed. The RAR is not predicted to be a narrow relation, but one with lots of scatter with large intrinsic deviations from the mean. That’s the natural prediction of MMW-type models.
I have explored many flavors of [L]CDM models. They generically predicts more scatter in the RAR than is observed. This is the natural expectation, and some fine-tuning has to be done to reduce the scatter to the observed level. The inevitable need for fine-tuning is why I became concerned for the dark matter paradigm, even before I became aware that MOND predicted exactly this. It is also why the observed RAR was considered to be against orthodoxy at the time: everybody’s prior was for a large scatter. It wasn’t just me.
In order to build a model, one has to make some assumptions. The obvious assumption to make, at the time, was a constant ratio of dark matter to baryons. Indeed, for many years, the working assumption was that this was about 10:1, maybe 20:1. This type of assumption is built into the models of MMW, who thought that they worked provided “(i) the masses of disks are a few percent of those of their haloes”. The (i) is there because it is literally their first point, and the assumption that everybody made. We were terrified of dropping this natural assumption, as the obvious danger is that it becomes a rolling fudge factor, assuming any value that is convenient for explaining any given observation.
Unfortunately, it had already become clear by this time from the data that a constant ratio of dark to luminous matter could not work. The earliest I said this on the record is 1996. [That was before LCDM had supplanted SCDM as the most favored cosmology. From that perspective, the low baryon fractions of galaxies seemed natural; it was clusters of galaxies that were weird.] I pointed out the likely failure of (i) to Mo when I first saw a draft of MMW (we had been office mates in Cambridge). I’ve writtenvariouspapers about it since. The point here is that, from the perspective of the kinematic data, the ratio of dark to luminous mass has to vary. It cannot be a constant as we had all assumed. But it has to vary in a way that doesn’t introduce scatter into relations like the RAR or the Baryonic Tully-Fisher relation, so we have to fine-tune this rolling fudge factor so that it varies with mass but always obtains the same value at the same mass.
A constant ratio of dark to luminous mass wasn’t just a convenient assumption. There is good physical reason to expect that this should be the case. The baryons in galaxies have to cool and dissipate to form a galaxy in the center of a dark matter halo. This takes time, imposing an upper limit on galaxy mass. But the baryons in small galaxies have ample time to cool and condense, so one naively expects that they should all do so. That would have been natural. It would also lead to a steeply increasing luminosity function, which is not observed, leading to the over-cooling and missing satellite problems.
Reconciling the observed and predicted mass functions is one of the reasons we invoke feedback. The energy produced by the stars that form in the first gas to condense are an energy source that feeds back into the surrounding gas. This can, in principle, reheat the remaining gas or expel it entirely, thereby precluding it from condensing and forming more stars as in the naive expectation. In principle. In practice, we don’t know how this works, or even if the energy provided by star formation couples to the surrounding gas in a way that does what we need it to do. Simulations do not have the resolution to follow feedback in detail, so instead make some assumptions (“subgrid physics”) about how this might happen, and tune the assumed prescription to fit some aspect of the data. Once this is done, it is possible to make legitimate predictions about other aspects of the data, provided they are unrelated. But we still don’t know if that’s how feedback works, and in no way is it natural. Rather, it is a deus ex machina that we invoke to save us from a glaring problem without really knowing how it works or even if it does. This is basically just theoretical hand-waving in the computational age.
People have been invoking feedback as a panacea for all ills in galaxy formation theory for so long that it has become familiar. Once something becomes familiar, everybody knows it. Since everybody knows that feedback has to play some role, it starts to seem like it was always expected. This is easily confused with being natural.
I could rant about the difficulty of making predictions with feedback afflicted models, but never mind the details. Let’s find some aspect of the data that is independent of the kinematics that we can use to specify the dark to luminous mass ratio. The most obvious candidate is abundance matching, in which the number density of observed galaxies is matched to the predicted number density of dark matter halos. We don’t have to believe feedback-based explanations to apply this, we merely have to accept that there is some mechanism to make the dark to luminous mass ratio variable. Whatever it is that makes this happen had better predict the right thing for both the mass function and the kinematics.
When it comes to the RAR, the application of abundance matching to assign halo masses to observed galaxies works out much better than the natural assumption of a constant ratio. This was first pointed out by Di Cintio & Lelli (2016), which inspired me to consider appropriately modified models. All I had to do was update the relation between stellar and halo mass from a constant ratio to a variable specified by abundance matching. This gives rather better results:
A model like that from 2000 but updated by assigning halo masses using an abundance matching relation.
This looks considerably better! The predicted scatter is much lower. How is this accomplished?
Abundance matching results in a non-linear relation bewteen stellar mass and halo mass. For the RAR, the scatter is reduced by narrowing the dynamic range of halo masses relative to the observed stellar masses. There is less variation in gDM. Empirically, this is what needs to happen – to a crude first approximation, the data are roughly consistent with all galaxies living in the same halo – i.e., no variation in halo mass with stellar mass. This was already known before abundance matching became rife; both the kinematic data and the mass function push us in this direction. There’s nothing natural about any of this; it’s just what we need to do to accommodate the data.
Still, it is tempting to say that we’ve succeeded in explaining the RAR. Indeed, some people have built the same kind of models to claim exactly this. While matters are clearly better, really we’re just less far off. By reducing the dynamic range in halo masses that are occupied by galaxies, the partial contribution of gDM to the gobs axis is compressed, and model lines perforce fall closer together. There’s less to distinguish an L* galaxy from a dwarf galaxy in this plane.
Nevertheless, there’s still too much scatter in the models. Harry Desmond made a specific study of this, finding that abundance matching “significantly overpredicts the scatter in the relation and its normalisation at low acceleration”, which is exactly what I’ve been saying. The offset in the normalization at low acceleration is obvious from inspection in the figure above: the models overshoot the low acceleration data. This led Navarro et al. to argue that there was a second acceleration scale, “an effective minimum acceleration probed by kinematic tracers in isolated galaxies” a little above 10-11 m/s/s. The models do indeed do this, over a modest range in gbar, and there is some evidence for it in some data. This does not persist in the more reliable data; those shown above are dominated by atomic gas so there isn’t even the systematic uncertainty of the stellar mass-to-light ratio to save us.
The astute observer will notice some pink model lines that fall well above the RAR in the plot above. These are for the most massive galaxies, those with luminosities in excess of L*. Below the knee in the Schechter function, there is a small range of halo masses for a given range of stellar masses. Above the knee, this situation is reversed. Consequently, the nonlinearity of abundance matching works against us instead of for us, and the scatter explodes. One can suppress this with an apt choice of abundance matching relation, but we shouldn’t get to pick and choose which relation we use. It can be made to work only because there remains enough uncertainty in abundance matching to select the “right” one. There is nothing natural about any this.
There are also these little hooks, the kinks at the high acceleration end of the models. I’ve mostly suppressed them here (as did Navarro et al.) but they’re there in the models if one plots to small enough radii. This is the signature of the cusp-core problem in the RAR plane. The hooks occur because the exponential disk model has a maximum acceleration at a finite radius that is a little under one scale length; this marks the maximum value that such a model can reach in gbar. In contrast, the acceleration gDM of an NFW halo continues to increase all the way to zero radius. Consequently, the predicted gobs continues to increase even after gbar has peaked and starts to decline again. This leads to little hook-shaped loops at the high acceleration end of the models in the RAR plane.
These hooks were going to be the segue to discuss more sophisticated models built by Pengfei Li, but that’s going to be a whole ‘nother post because these are quite enough words for now. So, until next time, don’t invest in bitcoins, Russian oil, or LCDM models that claim to explain the RAR.
This expression exactly depicts the progression of the radial acceleration relation. Some people were ahead of this curve, others are still behind it, but it quite accurately depicts the mass sociology. This is how we react to startling new facts.
For quotation purists, I’m not sure exactly what the original phrasing was. I have paraphrased it to be succinct and have substituted orthodoxy for religion, because even scientists can have orthodoxies: holy cows that must not be slaughtered.
I might even add a precursor stage zero to the list above:
0. It goes unrecognized.
This is to say, that if a new fact is sufficiently startling, we don’t just disbelieve it (stage 1); at first we fail to see it at all. We lack the cognitive framework to even recognize how important it is. An example is provided by the 1941 detection of the microwave background by Andrew McKellar. In retrospect, this is as persuasive as the 1964 detection of Penzias and Wilson to which we usually ascribe the discovery. At the earlier time, there was simply no framework for recognizing what it was that was being detected. It appears to me that P&Z didn’t know what they were looking at either until Peebles explained it to them.
The radial acceleration relation was first posed as the mass discrepancy-acceleration relation. They’re fundamentally the same thing, just plotted in a slightly different way. The mass discrepancy-acceleration relation shows the ratio of total mass to that which is visible. This is basically the ratio of the observed acceleration to that predicted by the observed baryons. This is useful to see how much dark matter is needed, but by construction the axes are not independent, as both measured quantities are used in forming the ratio.
The radial acceleration relation shows independent observations along each axis: observed vs. predicted acceleration. Though measured independently, they are not physically independent, as the baryons contribute some to the total observed acceleration – they do have mass, after all. One can construct a halo acceleration relation by subtracting the baryonic contribution away from the total; in principle the remainders are physically independent. Unfortunately, the axes again become observationally codependent, and the uncertainties blow up, especially in the baryon dominated regime. Which of these depictions is preferable depends a bit on what you’re looking to see; here I just want to note that they are the same information packaged somewhat differently.
To the best of my knowledge, the first mention of the mass discrepancy-acceleration relation in the scientific literature is by Sanders (1990). Its existence is explicit in MOND (Milgrom 1983), but here it is possible to draw a clear line between theory and data. I am only speaking of the empirical relation as it appears in the data, irrespective of anything specific to MOND.
I met Bob Sanders, along with many other talented scientists, in a series of visits to the University of Groningen in the early 1990s. Despite knowing him and having talked to him about rotation curves, I was unaware that he had done this.
Stage 0: It goes unrecognized.
For me, stage one came later in the decade at the culmination of a several years’ campaign to examine the viability of the dark matter paradigm from every available perspective. That’s a long paper, which nevertheless drew considerable praise from many people who actually read it. If you go to the bother of reading it today, you will see the outlines of many issues that are still debated and others that have been forgotten (e.g., the fine-tuning issues).
Around this time (1998), the dynamicists at Rutgers were organizing a meeting on galaxy dynamics, and asked me to be one of the speakers. I couldn’t possibly discuss everything in the paper in the time allotted, so was looking for a way to show the essence of the challenge the data posed. Consequently, I reinvented the wheel, coming up with the mass discrepancy-acceleration relation. Here I show the same data that I had then in the form of the radial acceleration relation:
The Radial Acceleration Relation from the data in McGaugh (1999). Plot credit: Federico Lelli. (There is a time delay in publication: the 1998 meeting’s proceedings appeared in 1999.)
I recognize this version of the plot as having been made by Federico Lelli. I’ve made this plot many times, but this is version I came across first, and it is better than mine in that the opacity of the points illustrates where the data are concentrated. I had been working on low surface brightness galaxies; these have low accelerations, so that part of the plot is well populated.
The data show a clear correlation. By today’s standards, it looks crude. Going on what we had then, it was fantastic. Correlations practically never look this good in extragalactic astronomy, and they certainly don’t happen by accident. Low quality data can hide a correlation – uncertainties cause scatter – but they can’t create a correlation where one doesn’t exist.
I showed the same result later that year (1998) at a meeting on the campus of the University of Maryland where I was a brand new faculty member. It was a much shorter presentation, so I didn’t have time to justify the context or explain much about the data. Contrary to the reception at Rutgers where I had adequate time to speak, the hostility of the audience to the result was palpable, their stony silence eloquent. They didn’t want to believe it, and plenty of peoplegot busyquestioning the data.
Stage 1: It is not true.
I spent the next five years expanding and improving the data. More rotation curves became available thanks to the work of many, particularly Erwin de Blok, Marc Verheijen, and Rob Swaters. That was great, but the more serious limitation was how well we could measure the stellar mass distribution needed to predict the baryonic acceleration.
The mass models we could build at the time were based on optical images. A mass model takes the observed light distribution, assigns a mass-to-light ratio, and makes a numerical solution of the Poisson equation to obtain the the gravitational force corresponding to the observed stellar mass distribution. This is how we obtain the stellar contribution to the predicted baryonic force; the same procedure is applied to the observed gas distribution. The blue part of the spectrum is the best place in which to observe low contrast, low surface brightness galaxies as the night sky is darkest there, at least during new moon. That’s great for measuring the light distribution, but what we want is the stellar mass distribution. The mass-to-light ratio is expected to have a lot of scatter in the blue band simply from the happenstance of recent star formation, which makes bright blue stars that are short-lived. If there is a stochastic uptick in the star formation rate, then the mass-to-light ratio goes down because there are lots of bright stars. Wait a few hundred million years and these die off, so the mass-to-light ratio gets bigger (in the absence of further new star formation). The time-integrated stellar mass may not change much, but the amount of blue light it produces does. Consequently, we expect to see well-observed galaxies trace distinct lines in the radial acceleration plane, even if there is a single universal relation underlying the phenomenon. This happens simply because we expect to get M*/L wrong from one galaxy to the next: in 1998, I had simply assumed all galaxies had the same M*/L for lack of any better prescription. Clearly, a better prescription was warranted.
In those days, I traveled through Tucson to observe at Kitt Peak with some frequency. On one occasion, I found myself with a few hours to kill between coming down from the mountain and heading to the airport. I wandered over to the Steward Observatory at the University of Arizona to see who I might see. A chance meeting in the wild west: I encountered Eric Bell and Roelof de Jong, who were postdocs there at the time. I knew Eric from his work on the stellar populations of low surface brightness galaxies, an interest closely aligned with my own, and Roelof from my visits to Groningen.
As we got to talking, Eric described to me work they were doing on stellar populations, and how they thought it would be possible to break the age-metallicity degeneracy using near-IR colors in addition to optical colors. They were mostly focused on improving the age constraints on stars in LSB galaxies, but as I listened, I realized they had constructed a more general, more powerful tool. At my encouragement (read their acknowledgements), they took on this more general task, ultimately publishing the classic Bell & de Jong (2001). In it, they built a table that enabled one to look up the expected mass-to-light ratio of a complex stellar population – one actively forming stars – as a function of color. This was a big step forward over my educated guess of a constant mass-to-light ratio: there was now a way to use a readily observed property, color, to improve the estimated M*/L of each galaxy in a well-calibrated way.
Combining the new stellar population models with all the rotation curves then available, I obtained an improved mass discrepancy-acceleration relation:
The Radial Acceleration Relation from the data in McGaugh (2004); version using Bell’s stellar population synthesis models to estimate M*/L (see Fig. 5 for other versions). Plot credit: Federico Lelli.
Again, the relation is clear, but with scatter. Even with the improved models of Bell & de Jong, some individual galaxies have M*/L that are wrong – that’s inevitable in this game. What you cannot know is which ones! Note, however, that there are now 74 galaxies in this plot, and almost all of them fall on top of each other where the point density is large. There are some obvious outliers; those are presumably just that: the trees that fall outside the forest because of the expected scatter in M*/L estimates.
I tried a variety of prescriptions for M*/L in addition to that of Bell & de Jong. Though they differed in texture, they all told a consistent story. A relation was clearly present; only its detailed form varied with the adopted prescription.
The prescription that minimized the scatter in the relation was the M*/L obtained in MOND fits. That’s a tautology: by construction, a MOND fit finds the M*/L that puts a galaxy on this relation. However, we can generalize the result. Maybe MOND is just a weird, unexpected way of picking a number that has this property; it doesn’t have to be the true mass-to-light ratio in nature. But one can then define a ratio Q
Equation 21 of McGaugh (2004).
that relates the “true” mass-to-light ratio to the number that gives a MOND fit. They don’t have to be identical, but MOND does return M*/L that are reasonable in terms of stellar populations, so Q ~ 1. Individual values could vary, and the mean could be a bit more or less than unity, but not radically different. One thing that impressed me at the time about the MOND fits (most of which were made by Bob Sanders) was how well they agreed with the stellar population models, recovering the correct amplitude, the correct dependence on color in different bandpasses, and also giving the expected amount of scatter (more in the blue than in the near-IR).
Fig. 7 of McGaugh (2004). Stellar mass-to-light ratios of galaxies in the blue B-band (top) and near-IR K-band (bottom) as a function of B–V color for the prescription of maximum disk (left) and MOND (right). Each point represents one galaxy for which the requisite data were available at the time. The line represents the mean expectation of stellar population synthesis models from Bell et al. (2003). These lines are completely independent of the data: neither the normalization nor the slope has been fit to the dynamical data. The red points are due to Sanders & Verheijen (1998); note the weak dependence of M*/L on color in the near-IR.
The obvious interpretation is that we should take seriously a theory that obtains good fits with a single free parameter that checks out admirably well with independent astrophysical constraints, in this case the M*/L expected for stellar populations. But I knew many people would not want to do that, so I defined Q to generalize to any M*/L in any (dark matter) context one might want to consider.
Indeed, Q allows us to write a general expression for the rotation curve of the dark matter halo (essentially the HAR alluded to above) in terms of that of the stars and gas:
The stars and the gas are observed, and μ is the MOND interpolation function assumed in the fit that leads to Q. Except now the interpolation function isn’t part of some funny new theory; it is just the shape of the radial acceleration relation – a relation that is there empirically. The only fit factor between these data and any given model is Q – a single number of order unity. This does leave some wiggle room, but not much.
I went off to a conference to describe this result. At the 2006 meeting Galaxies in the Cosmic Web in New Mexico, I went out of my way at the beginning of the talk to show that even if we ignore MOND, this relation is present in the data, and it provides a strong constraint on the required distribution of dark matter. We may not know why this relation happens, but we can use it, modulo only the modest uncertainty in Q.
Having bent over backwards to distinguish the data from the theory, I was disappointed when, immediately at the end of my talk, prominent galaxy formation theorist Anatoly Klypin loudly shouted
“We don’t have to explain MOND!”
It stinks of MOND!
But you do have to explain the data. The problem was and is that the data look like MOND. It is easy to conflate one with the other; I have noticed that a lot of people have trouble keeping the two separate. Just because you don’t like the theory doesn’t mean that the data are wrong. What Anatoly was saying was that
2. It is contrary to orthodoxy.
Despite phrasing the result in a way that would be useful to galaxy formation theorists, they did not, by and large, claim to explain it at the time – it was contrary to orthodoxy so didn’t need to be explained. Looking at the list of papers that cite this result, the early adopters were not the target audience of galaxy formation theorists, but rather others citing it to say variations of “no way dark matter explains this.”
At this point, it was clear to me that further progress required a better way to measure the stellar mass distribution. Looking at the stellar population models, the best hope was to build mass models from near-infrared rather than optical data. The near-IR is dominated by old stars, especially red giants. Galaxies that have been forming stars actively for a Hubble time tend towards a quasi-equilibrium in which red giants are replenished by stellar evolution at about the same rate they move on to the next phase. One therefore expects the mass-to-light ratio to be more nearly constant in the near-IR. Not perfectly so, of course, but a 2 or 3 micron image is as close to a map of the stellar mass of a galaxy as we’re likely to get.
Around this time, the University of Maryland had begun a collaboration with Kitt Peak to build a big infrared camera, NEWFIRM, for the 4m telescope. Rob Swaters was hired to help write software to cope with the massive data flow it would produce. The instrument was divided into quadrants, each of which had a field of view sufficient to hold a typical galaxy. When it went on the telescope, we developed an efficient observing method that I called “four-shooter”, shuffling the target galaxy from quadrant to quadrant so that in processing we could remove the numerous instrumental artifacts intrinsic to its InSb detectors. This eventually became one of the standard observing modes in which the instrument was operated.
NEWFIRM in the lab in Tucson. Most of the volume is for cryogenics: the IR detectors are helium–cooled to 30 K. Partial student for scale.
I was optimistic that we could make rapid progress, and at first we did. But despite all the work, despite all the active cooling involved, we were still on the ground. The night sky was painfully bright in the IR. Indeed, the thermal component dominated, so we could observe during full moon. To an observer of low surface brightness galaxies attuned to any hint of scattered light from so much as a crescent moon, I cannot describe how discombobulating it was to walk outside the dome and see the full fricking moon. So bright. So wrong. And that wasn’t even the limiting factor: the thermal background was.
We had hit a surface brightness wall, again. We could do the bright galaxies this way, but the LSBs that sample the low acceleration end of the radial acceleration relation were rather less accessible. Not inaccessible, but there was a better way.
The Spitzer Space Telescope was active at this time. Jim Schombert and I started winning time to observe LSB galaxies with it. We discovered that space is dark. There was no atmosphere to contend with. No scattered light from the clouds or the moon or the OH lines that afflict that part of the sky spectrum. No ground-level warmth. The data were fantastic. In some sense, they were too good: the biggest headache we faced was blotting out all the background galaxies that shown right through the optically thin LSB galaxies.
Still, it took a long time to collect and analyze the data. We were starting to get results by the early-teens, but it seemed like it would take forever to get through everything I hoped to accomplish. Fortunately, when I moved to Case Western, I was able to hire Federico Lelli as a postdoc. Federico’s involvement made all the difference. After many months of hard, diligent, and exacting work, he constructed what is now the SPARC database. Finally all the elements were in place to construct an empirical radial acceleration relation with absolutely minimal assumptions about the stellar mass-to-light ratio.
In parallel with the observational work, Jim Schombert had been working hard to build realistic stellar population models that extended to the 3.6 micron band of Spitzer. Spitzer had been built to look redwards of this, further into the IR. 3.6 microns was its shortest wavelength passband. But most models at the time stopped at the K-band, the 2.2 micron band that is the reddest passband that is practically accessible from the ground. They contain pretty much the same information, but we still need to calculate the band-specific value of M*/L.
Being a thorough and careful person, Jim considered not just the star formation history of a model stellar population as a variable, and not just its average metallicity, but also the metallicity distribution of its stars, making sure that these were self-consistent with the star formation history. Realistic metallicity distributions are skewed; it turn out that this subtle effect tends to counterbalance the color dependence of the age effect on M*/L in the near-IR part of the spectrum. The net results is that we expect M*/L to be very nearly constant for all late type galaxies.
This is the best possible result. To a good approximation, we expected all of the galaxies in the SPARC sample to have the same mass-to-light ratio. What you see is what you get. No variable M*/L, no equivocation, just data in, result out.
We did still expect some scatter, as that is an irreducible fact of life in this business. But even that we expected to be small, between 0.1 and 0.15 dex (roughly 25 – 40%). Still, we expected the occasional outlier, galaxies that sit well off the main relation just because our nominal M*/L didn’t happen to apply in that case.
One day as I walked past Federico’s office, he called for me to come look at something. He had plotted all the data together assuming a single M*/L. There… were no outliers. The assumption of a constant M*/L in the near-IR didn’t just work, it worked far better than we had dared to hope. The relation leapt straight out of the data:
The Radial Acceleration Relation from the data in McGaugh et al. (2016). Plot credit: Federico Lelli.
Over 150 galaxies, with nearly 2700 resolved measurements within each galaxy, each with their own distinctive mass distribution, all pile on top of each other without effort. There was plenty of effort in building the database, but once it was there, the result appeared, no muss, no fuss. No fitting or fiddling. Just the measurements and our best estimate of the mean M*/L, applied uniformly to every individual galaxy in the sample. The scatter was only 0.12 dex, within the range expected from the population models.
No MOND was involved in the construction of this relation. It may look like MOND, but we neither use MOND nor need it in any way to see the relation. It is in the data. Perhaps this is the sort of result for which we would have to invent MOND if it did not already exist. But the dark matter paradigm is very flexible, and many papers have since appeared that claim to explain the radial acceleration relation. We have reached
3. We knew it all along.
On the one hand, this is good: the community is finally engaging with a startling fact that has been pointedly ignored for decades. On the other hand, many of the claims to explain the radial acceleration relation are transparently incorrecton their face, being nothing more than elaborations of models I considered and discarded as obviously unworkable long ago. They do not provide a satisfactory explanation of the predictive power of MOND, and inevitably fail to address important aspects of the problem, like disk stability. Rather than grapple with the deep issues the new and startling fact poses, it has become fashionable to simply assert that one’s favorite model explains the radial acceleration relation, and does so naturally.
There is nothing natural about the radial acceleration relation in the context of dark matter. Indeed, it is difficult to imagine a less natural result – hence stages one and two. So on the one hand, I welcome the belated engagement, and am willing to consider serious models. On the other hand, if someone asserts that this is natural and that we expected it all along, then the engagement isn’t genuine: they’re just fooling themselves.
Early Days. This was one of Vera Rubin’s favorite expressions. I always had a hard time with it, as many things are very well established. Yet it seems that we have yet to wrap our heads around the problem. Vera’s daughter, Judy Young, once likened the situation to the parable of the blind men and the elephant. Much is known, yes, but the problem is so vast that each of us can perceive only a part of the whole, and the whole may be quite different from the part that is right before us.
So I guess Vera is right as always: these remain Early Days.
Science progresses through hypothesis testing. The primary mechanism for distinguishing between hypotheses is predictive power. The hypothesis that can predict new phenomena is “better.” This is especially true for surprising, a priori predictions: it matters more when the new phenomena was not expected in the context of an existing paradigm.
I’ve seen this happen many times now. MOND has had many predictive successes. As a theory, it has been exposed to potential falsification, and passed many tests. These have often been in the form of phenomena that had not been anticipated in any other way, and were initially received as strange to the point of seeming impossible. It is exactly the situation envisioned in Putnam’s “no miracles” argument: it is unlikely to the point of absurdity that a wholly false theory should succeed in making so many predictions of such diversity and precision.
MOND has many doubters, which I can understand. What I don’t get is the ignorance I so often encounter among them. To me, the statement that MOND has had many unexpected predictions come true is a simple statement of experiential fact. I suspect it will be received by some as a falsehood. It shouldn’t be, so if you don’t know what I’m talking about, you should try reading the relevant literature. What papers about MOND have you actually read?
Ignorance is not a strong basis for making scientific judgements. Before I criticize something, I make sure I know what I’m talking about. That’s rarely true of the complaints I hear against MOND. There are legitimate ones, to be sure, but for the most part I hear assertions like
MOND is guaranteed to fit rotation curves.
It fits rotation curves but does nothing else.
It is just a fitting tool with no predictive power.
These are myths, plain and simple. They are easily debunked, and were longago. Yet I hear them repeated often by people who think they know better, one as recently as last week. Serious people who expect to be taken seriously as scientists, and yet they repeat known falsehoods as if they were established fact. Is there a recycling bin of debunked myths that gets passed around? I guess it is easy to believe a baseless rumor when it conforms to your confirmation bias: no need for fact-checking!
Aside from straight-up reality denial, another approach is to claim that dark matter predicts exactly the same thing, whatever it is. I’ve seen this happen so often, I know how the script always goes:
• We make a new observation X that is surprising. • We test the hypothesis, and report the result: “Gee, MOND predicted this strange effect, and we see evidence of it in the data.” • Inevitable Question: What does LCDM predict? • Answer: Not that. • Q: But what does it predict? • A: It doesn’t really make a clear prediction on this subject, so we have to build some kind of model to even begin to address this question. In the most obvious models one can construct, it predicts Y. Y is not the same as X. • Q: What about more complicated models? • A: One can construct more complicated models, but they are not unique. They don’t make a prediction so much as provide a menu of options from which we may select the results that suit us. The obvious danger is that it becomes possible to do anything, and we have nothing more than an epicycle theory of infinite possibilities. If we restrict ourselves to considering the details of serious models that have only been partially fine-tuned over the course of the development of the field, then there are still a lot of possibilities. Some of them come closer to reality than others but still don’t really do the right thing for the following reasons…[here follows 25 pages of minutia in the ApJ considering every up/down left/right stand on your head and squint possibility that still winds up looking more like Y than like X.] You certainly couldn’t predict X this way, as MOND did a priori. • Q: That’s too long to read. Dr. Z says it works, so he must be right since we already know that LCDM is correct.
The thing is, Dr. Z did not predict X ahead of time. MOND did. Maybe Dr. Z’s explanation in terms of dark matter makes sense. Often it does not, but even if it does, so what? Why should I be more impressed with a theory that only explains things after they’re observed when another predicted them a priori?
There are lots of Dr. Z’s. No matter how carefully one goes through the minutia, no matter how clearly one demonstrates that X cannot work in a purely conventional CDM context, there is always someone who says it does. That’s what people want to hear, so that’s what they choose to believe. Way easier that way. Or, as it has been noted before
Faced with the choice between changing one’s mind and proving that there is no need to do so, almost everybody gets busy on the proof.
It’s early in the new year, so what better time to violate my own resolutions? I prefer to be forward-looking and not argue over petty details, or chase wayward butterflies. But sometimes the devil is in the details, and the occasional butterfly can be entertaining if distracting. Today’s butterfly is the galaxy AGC 114905, which has recently been in the news.
There are a couple of bandwagons here: one to rebrand very low surface brightness galaxies as ultradiffuse, and another to get overly excited when these types of galaxies appear to lack dark matter. The nomenclature is terrible, but that’s normal for astronomy so I would overlook it, except that in this case it gives the impression that there is some new population of galaxies behaving in an unexpected fashion, when instead it looks to me like the opposite is the case. The extent to which there are galaxies lacking dark matter is fundamental to our interpretation of the acceleration discrepancy (aka the missing mass problem), so bears closer scrutiny. The evidence for galaxies devoid of dark matter is considerably weaker than the current bandwagon portrays.
If it were just one butterfly (e.g., NGC 1052-DF2), I wouldn’t bother. Indeed, it was that specific case that made me resolve to ignore such distractions as a waste of time. I’ve seen this movie literally hundreds of times, I know how it goes:
Observations of this one galaxy falsify MOND!
Hmm, doing the calculation right, that’s what MOND predicts.
OK, but better data shrink the error bars and now MOND falsified.
Are you sure about…?
Yes. We like this answer, let’s stop thinking about it now.
As the data continue to improve, it approaches what MOND predicts.
Over and over again. DF44 is another example that has followed this trajectory, and there are many others. This common story is not widely known – people lose interest once they get the answer they want. Irrespective of whether we can explain this weird case or that, there is a deeper story here about data analysis and interpretation that seems not to be widely appreciated.
My own experience inevitably colors my attitude about this, as it does for us all, so let’s start thirty years ago when I was writing a dissertation on low surface brightness (LSB) galaxies. I did many things in my thesis, most of them well. One of the things I tried to do then was derive rotation curves for some LSB galaxies. This was not the main point of the thesis, and arose almost as an afterthought. It was also not successful, and I did not publish the results because I didn’t believe them. It wasn’t until a few years later, with improved data, analysis software, and the concerted efforts of Erwin de Blok, that we started to get a handle on things.
The thing that really bugged me at the time was not the Doppler measurements, but the inclinations. One has to correct the observed velocities by the inclination of the disk, 1/sin(i). The inclination can be constrained by the shape of the image and by the variation of velocities across the face of the disk. LSB galaxies presented raggedy images and messy velocity fields. I found it nigh on impossible to constrain their inclinations at the time, and it remains a frequent struggle to this day.
Here is an example of the LSB galaxy F577-V1 that I find lurking around on disk from all those years ago:
The LSB galaxy F577-V1 (B-band image, left) and the run of the eccentricity of ellipses fit to the atomic gas data (right).
A uniform disk projected on the sky at some inclination will have a fixed corresponding eccentricity, with zero being the limit of a circular disk seen perfectly face-on (i = 0). Do you see a constant value of the eccentricity in the graph above? If you say yes, go get your eyes checked.
What we see in this case is a big transition from a fairly eccentric disk to one that is more nearly face on. The inclination doesn’t have a sudden warp; the problem is that the assumption of a uniform disk is invalid. This galaxy has a bar – a quasi-linear feature that is common in many spiral galaxies that is supported by non-circular orbits. Even face-on, the bar will look elongated simply because it is. Indeed, the sudden change in eccentricity is one way to define the end of the bar, which the human eye-brain can do easily by looking at the image. So in a case like this, one might adopt the inclination from the outer points, and that might even be correct. But note that there are spiral arms along the outer edge that is visible to the eye, so it isn’t clear that even these isophotes are representative of the shape of the underlying disk. Worse, we don’t know what happens beyond the edge of the data; the shape might settle down at some other level that we can’t see.
This was so frustrating, I swore never to have anything to do with galaxy kinematics ever again. Over 50 papers on the subject later, all I can say is D’oh! Repeatedly.
Bars are rare in LSB galaxies, but it struck me as odd that we saw any at all. We discovered unexpectedly that they were dark matter dominated – the inferred dark halo outweighs the disk, even within the edge defined by the stars – but that meant that the disks should be stable against the formation of bars. My colleague Chris Mihos agreed, and decided to look into it. The answer was yes, LSB galaxies should be stable against bar formation, at least internally generated bars. Sometimes bars are driven by external perturbations, so we decided to simulate the close passage of a galaxy of similar mass – basically, whack it real hard and see what happens:
Simulation of an LSB galaxy during a strong tidal encounter with another galaxy. Closest approach is at t=24 in simulation units (between the first and second box). A linear bar does not form, but the model galaxy does suffer a strong and persistent oval distortion: all these images are shown face-on (i=0). From Mihos et al (1997).
This was a conventional simulation, with a dark matter halo constructed to be consistent with the observed properties of the LSB galaxy UGC 128. The results are not specific to this case; it merely provides numerical corroboration of the more general case that we showed analytically.
Consider the image above in the context of determining galaxy inclinations from isophotal shapes. We know this object is face-on because we can control our viewing angle in the simulation. However, we would not infer i=0 from this image. If we didn’t know it had been perturbed, we would happily infer a substantial inclination – in this case, easily as much as 60 degrees! This is an intentionally extreme case, but it illustrates how a small departure from a purely circular shape can be misinterpreted as an inclination. This is a systematic error, and one that usually makes the inclination larger than it is: it is possible to appear oval when face-on, but it is not possible to appear more face-on than perfectly circular.
Around the same time, Erwin and I were making fits to the LSB galaxy data – with both dark matter halos and MOND. By this point in my career, I had deeply internalized that the data for LSB galaxies were never perfect. So we sweated every detail, and worked through every “what if?” This was a particularly onerous task for the dark matter fits, which could do many different things if this or that were assumed – we discussed all the plausible possibilities at the time. (Subsequently, a rich literature sprang up discussing many unreasonable possibilities.) By comparison, the MOND fits were easy. They had fewer knobs, and in 2/3 of the cases they simply worked, no muss, no fuss.
For the other 1/3 of the cases, we noticed that the shape of the MOND-predicted rotation curves was usually right, but the amplitude was off. How could it work so often, and yet miss in this weird way? That sounded like a systematic error, and the inclination was the most obvious culprit, with 1/sin(i) making a big difference for small inclinations. So we decided to allow this as a fit parameter, to see whether a fit could be obtained, and judge how [un]reasonable this was. Here is an example for two galaxies:
UGC 1230 (left) and UGC 5005 (right). Ovals show the nominally measured inclination (i=22o for UGC 1230 and 41o for UGC 5005, respectively) and the MOND best-fit value (i=17o and 30o). From de Blok & McGaugh (1998).
The case of UGC 1230 is memorable to me because it had a good rotation curve, despite being more face-on than widely considered acceptable for analysis. And for good reason: the difference between 22 and 17 degrees make a huge difference to the fit, changing it from way off to picture perfect.
Rotation curve fits for UGC 1230 (top) and UGC 5005 (bottom) with the inclination fixed (left) and fit (right). From de Blok & McGaugh (1998).
What I took away from this exercise is how hard it is to tell the difference between inclination values for relatively face-on galaxies. UGC 1230 is obvious: the ovals for the two inclinations are practically on top of each other. The difference in the case of UGC 5005 is more pronounced, but look at the galaxy. The shape of the outer isophote where we’re trying to measure this is raggedy as all get out; this is par for the course for LSB galaxies. Worse, look further in – this galaxy has a bar! The central bar is almost orthogonal to the kinematic major axis. If we hadn’t observed as deeply as we had, we’d think the minor axis was the major axis, and the inclination was something even higher.
I remember Erwin quipping that he should write a paper on how to use MOND to determine inclinations. This was a joke between us, but only half so: using the procedure in this way would be analogous to using Tully-Fisher to measure distances. We would simply be applying an empirically established procedure to constrain a property of a galaxy – luminosity from line-width in that case of Tully-Fisher; inclination from rotation curve shape here. That we don’t understand why this works has never stopped astronomers before.
Systematic errors in inclination happen all the time. Big surveys don’t have time to image deeply – they have too much sky area to cover – and if there is follow-up about the gas content, it inevitably comes in the form of a single dish HI measurement. This is fine; it is what we can do en masse. But an unresolved single dish measurement provides no information about the inclination, only a pre-inclination line-width (which itself is a crude proxy for the flat rotation speed). The inclination we have to take from the optical image, which would key on the easily detected, high surface brightness central region of the image. That’s the part that is most likely to show a bar-like distortion, so one can expect lots of systematic errors in the inclinations determined in this way. I provided a long yet still incomplete discussion of these issues in McGaugh (2012). This is both technical and intensely boring, so not even the pros read it.
This brings us to the case of AGC 114905, which is part of a sample of ultradiffuse galaxies discussed previously by some of the same authors. On that occasion, I kept to the code, and refrained from discussion. But for context, here are those data on a recent Baryonic Tully-Fisher plot. Spoiler alert: that post was about a different sample of galaxies that seemed to be off the relation but weren’t.
Baryonic Tully-Fisher relation showing the ultradiffuse galaxies discussed by Mancera Piña et al. (2019) as gray circles. These are all outliers from the relation; AGC 114905 is highlighted in orange. Placing much meaning in the outliers is a classic case of missing the forest for the trees. The outliers are trees. The Tully-Fisher relation is the forest.
On the face of it, these ultradiffuse galaxies (UDGs) are all very serious outliers. This is weird – they’re not some scatter off to one side, they’re just way off on their own island, with no apparent connection to the rest of established reality. By calling them a new name, UDG, it makes it sound plausible that these are some entirely novel population of galaxies that behave in a new way. But they’re not. They are exactly the same kinds of galaxies I’ve been talking about. They’re all blue, gas rich, low surface brightness, fairly isolated galaxies – all words that I’ve frequently used to describe my thesis sample. These UDGs are all a few billion solar mass is baryonic mass, very similar to F577-V1 above. You could give F577-V1 a different name, slip into the sample, and nobody would notice that it wasn’t like one of the others.
The one slight difference is implied by the name: UDGs are a little lower in surface brightness. Indeed, once filter transformations are taken into account, the definition of ultradiffuse is equal to what I arbitrarily called very low surface brightness in 1996. Most of my old LSB sample galaxies have central stellar surface brightnesses at or a bit above 10 solar masses per square parsec while the UDGs here are a bit under this threshold. For comparison, in typical high surface brightness galaxies this quantity is many hundreds, often around a thousand. Nothing magic happens at the threshold of 10 solar masses per square parsec, so this line of definition between LSB and UDG is an observational distinction without a physical difference. So what are the odds of a different result for the same kind of galaxies?
Indeed, what really matters is the baryonic surface density, not just the stellar surface brightness. A galaxy made purely of gas but no stars would have zero optical surface brightness. I don’t know of any examples of that extreme, but we came close to it with the gas rich sample of Trachternach et al. (2009) when we tried this exact same exercise a decade ago. Despite selecting that sample to maximize the chance of deviations from the Baryonic Tully-Fisher relation, we found none – at least none that were credible: there were deviant cases, but their data were terrible. There were no deviants among the better data. This sample is comparable or even extreme than the UDGs in terms of baryonic surface density, so the UDGs can’t be exception because they’re a genuinely new population, whatever name we call them by.
The key thing is the credibility of the data, so let’s consider the data for AGC 114905. The kinematics are pretty well ordered; the velocity field is well observed for this kind of beast. It ought to be; they invested over 40 hours of JVLA time into this one galaxy. That’s more than went into my entire LSB thesis sample. The authors are all capable, competent people. I don’t think they’ve done anything wrong, per se. But they do seem to have climbed aboard the bandwagon of dark matter-free UDGs, and have talked themselves into believing smaller error bars on the inclination than I am persuaded is warranted.
AGC 114905 in stars (left) and gas (right). The contours of the gas distribution are shown on top of the stars in white. Figure 1 from Mancera Piña et al. (2021).
This messy morphology is typical of very low surface brightness galaxies – hence their frequent classification as Irregular galaxies. Though messier, it shares some morphological traits with the LSB galaxies shown above. The central light distribution is elongated with a major axis that is not aligned with that of the gas. The gas is raggedy as all get out. The contours are somewhat boxy; this is a hint that something hinky is going on beyond circular motion in a tilted axisymmetric disk.
The authors do the right thing and worry about the inclination, checking to see what it would take to be consistent with either LCDM or MOND, which is about i=11o in stead of the 30o indicated by the shape of the outer isophote. They even build a model to check the plausibility of the smaller inclination:
Contours of models of disks with different inclinations (lines, as labeled) compared to the outer contour of the gas distribution of AGC 114905. Figure 7 from Mancera Piña et al. (2021).
Clearly the black line (i=30o) is a better fit to the shape of the gas distribution than the blue dashed line (i=11o). Consequently, they “find it unlikely that we are severely overestimating the inclination of our UDG, although this remains the largest source of uncertainty in our analysis.” I certainly agree with the latter phrase, but not the former. I think it is quite likely that they are overestimating the inclination. I wouldn’t even call it a severe overestimation; more like par for the course with this kind of object.
As I have emphasized above and elsewhere, there are many things that can go wrong in this sort of analysis. But if I were to try to put my finger on the most important thing, here it would be the inclination. The modeling exercise is good, but it assumes “razor-thin axisymmetric discs.” That’s a reasonable thing to do when building such a model, but we have to bear in mind that real disks are neither. The thickness of the disk probably doesn’t matter too much for a nearly face-on case like this, but the assumption of axisymmetry is extraordinarily dubious for an Irregular galaxy. That’s how they got the name.
It is hard to build models that are not axisymmetric. Once you drop this simplifying assumption, where do you even start? So I don’t fault them for stopping at this juncture, but I can also imagine doing as de Blok suggested, using MOND to set the inclination. Then one could build models with asymmetric features by trial and error until a match is obtained. Would we know that such a model would be a better representation of reality? No. Could we exclude such a model? Also no. So the bottom line is that I am not convinced that the uncertainty in the inclination is anywhere near as small as the adopted ±3o.
That’s very deep in the devilish details. If one is worried about a particular result, one can back off and ask if it makes sense in the context of what we already know. I’ve illustrated this process previously. First, check the empirical facts. Every other galaxy in the universe with credible data falls on the Baryonic Tully-Fisher relation, including very similar galaxies that go by a slightly different name. Hmm, strike one. Second, check what we expect from theory. I’m not a fan of theory-informed data interpretation, but we know that LCDM, unlike SCDM before it, at least gets the amplitude of the rotation speed in the right ballpark (Vflat ~ V200). Except here. Strike two. As much as we might favor LCDM as the standard cosmology, it has now been extraordinarily well established that MOND has considerable success in not just explaining but predicting these kind of data, with literally hundreds of examples. One hundred was the threshold Vera Rubin obtained to refute excuses made to explain away the first few flat rotation curves. We’ve crossed that threshold: MOND phenomenology is as well established now as flat rotation curves were at the inception of the dark matter paradigm. So while I’m open to alternative explanations for the MOND phenomenology, seeing that a few trees stand out from the forest is never going to be as important as the forest itself.
This brings us to a physical effect that people should be aware of. We touched on the bar stability above, and how a galaxy might look oval even when seen face on. This happens fairly naturally in MOND simulations of isolated disk galaxies. They form bars and spirals and their outer parts wobble about. See, for example, this simulation by Nils Wittenburg. This particular example is a relatively massive galaxy; the lopsidedness reminds me of M101 (Watkins et al. 2017). Lower mass galaxies deeper in the MOND regime are likely even more wobbly. This happens because disks are only marginally stable in MOND, not the over-stabilized entities that have to be hammered to show a response as in our early simulation of UGC 128 above. The point is that there is good reason to expect even isolated face-on dwarf Irregulars to look, well, irregular, leading to exactly the issues with inclination determinations discussed above. Rather than being a contradiction to MOND, AGC 114905 may illustrate one of its inevitable consequences.
I don’t like to bicker at this level of detail, but it makes a profound difference to the interpretation. I do think we should be skeptical of results that contradict well established observational reality – especially when over-hyped. God knows I was skeptical of our own results, which initially surprised the bejeepers out of me, but have been repeatedlycorroborated by subsequent observations.
I guess I’m old now, so I wonder how I come across to younger practitioners; perhaps as some scary undead monster. But mates, these claims about UDGs deviating from established scaling relations are off the edge of the map.
That’s my prediction, anyway. A little context first.
New Year, New Telescope
First, JWST finally launched. This has been a long-delayed NASA mission; the launch had been put off so many times it felt like a living example of Zeno’s paradox: ever closer but never quite there. A successful launch is always a relief – rockets do sometimes blow up on lift off – but there is still sweating to be done: it has one of the most complex deployments of any space mission. This is still a work in progress, but to start the new year, I thought it would be nice to look forward to what we hope to see.
JWST is a major space telescope optimized for observing in the near and mid-infrared. This enables observation of redshifted light from the earliest galaxies. This should enable us to see them as they would appear to our eyes had we been around at the time. And that time is long, long ago, in galaxies very far away: in principle, we should be able to see the first galaxies in their infancy, 13+ billion years ago. So what should we expect to see?
Early galaxies in LCDM
A theory is only as good as its prior. In LCDM, structure forms hierarchically: small objects emerge first, then merge into larger ones. It takes time to build up large galaxies like the Milky Way; the common estimate early on was that it would take at least a billion years to assemble an L* galaxy, and it could easily take longer. Ach, terminology: an L* galaxy is the characteristic luminosity of the Schechter function we commonly use to describe the number density of galaxies of various sizes. L* galaxies like the Milky Way are common, but the number of brighter galaxies falls precipitously. Bigger galaxies exist, but they are rare above this characteristic brightness, so L* is shorthand for a galaxy of typical brightness.
We expect galaxies to start small and slowly build up in size. This is a very basic prediction of LCDM. The hierarchical growth of dark matter halos is fundamental, and relatively easy to calculate. How this translates to the visible parts of galaxies is more fraught, depending on the details of baryonic infall, star formation, and the many kinds of feedback. [While I am a frequent critic of model feedback schemes implemented in hydrodynamic simulations on galactic scales, there is no doubt that feedback happens on the much smaller scales of individual stars and their nurseries. These are two very different things for which we confusingly use the same word since the former is the aspirational result of the latter.] That said, one only expects to assemble mass so fast, so the natural expectation is to see small galaxies first, with larger galaxies emerging slowly as their host dark matter halos merge together.
Here is an example of a model formation history that results in the brightest galaxy in a cluster (from De Lucia & Blaizot 2007). Little things merge to form bigger things (hence “hierarchical”). This happens a lot, and it isn’t really clear when you would say the main galaxy had formed. The final product (at lookback time zero, at redshift z=0) is a big galaxy composed of old stars – fairly typically for a giant elliptical. But the most massive progenitor is still rather small 8 billion years ago, over 4 billion years after the Big Bang. The final product doesn’t really emerge until the last major merger around 4 billion years ago. This is just one example in one model, and there are many different models, so your mileage will vary. But you get the idea: it takes a long time and a lot of mergers to assemble a big galaxy.
Brightest cluster galaxy merger tree. Time progresses upwards from early in the universe at bottom to the present day at top. Every line is a small galaxy that merges to ultimately form the larger galaxy. Symbols are color-coded by B−V color (red meaning old stars, blue young) and their area scales with the stellar mass (bigger circles being bigger galaxies. From De Lucia & Blaizot 2007).
It is important to note that in a hierarchical model, the age of a galaxy is not the same as the age of the stars that make up the galaxy. According to De Lucia & Blaizot, the stars of the brightest cluster galaxies
“are formed very early (50 per cent at z~5, 80 per cent at z~3)”
but do so
“in many small galaxies”
– i.e., the little progenitor circles in the plot above. The brightest cluster galaxies in their model build up rather slowly, such that
“half their final mass is typically locked-up in a single galaxy after z~0.5.”
So all the star formation happens early in the little things, but the final big thing emerges later – a lot later, only reaching half its current size when the universe is about 8 Gyr old. (That’s roughly when the solar system formed: we are late-comers to this party.) Given this prediction, one can imagine that JWST should see lots of small galaxies at high redshift, their early star formation popping off like firecrackers, but it shouldn’t see any big galaxies early on – not really at z > 3 and certainly not at z > 5.
Big galaxies in the data at early times?
While JWST is eagerly awaited, people have not been idle about looking into this. There have been many deep surveys made with the Hubble Space Telescope, augmented by the infrared capable (and now sadly defunct) Spitzer Space Telescope. These have already spied a number of big galaxies at surprisingly high redshift. So surprising that Steinhardt et al. (2016) dubbed it “The Impossibly Early Galaxy Problem.” This is their key plot:
The observed (points) and predicted (lines) luminosity functions of galaxies at various redshifts (colors). If all were well, the points would follow the lines of the same color. Instead, galaxies appear to be brighter than expected, already big at the highest redshifts probed. From Steinhardt et al. (2016).
There are lots of caveats to this kind of work. Constructing the galaxy luminosity function is a challenging task at any redshift; getting it right at high redshift especially so. While what counts as “high” varies, I’d say everything on the above plot counts. Steinhardt et al. (2016) worry about these details at considerable length but don’t find any plausible way out.
Around the same time, one of our graduate students, Jay Franck, was looking into similar issues. One of the things he found was that not only were there big galaxies in place early on, but they were also in clusters (or at least protoclusters) early and often. That is to say, not only are the galaxies too big too soon, so are the clusters in which they reside.
Dr. Franck made his own comparison of data to models, using the Millennium simulation to devise an apples-to-apples comparison:
The apparent magnitude m* at 4.5 microns of L* galaxies in clusters as a function of redshift. Circles are data; squares represent the Millennium simulation. These diverge at z > 2: galaxies are brighter (smaller m*) than predicted (Fig. 5.5 from Franck 2017).
The result is that the data look more like big galaxies formed early already as big galaxies. The solid lines are “passive evolution” models in which all the stars form in a short period starting at z=10. This starting point is an arbitrary choice, but there is little cosmic time between z = 10 and 20 – just a few hundred million years, barely one spin around the Milky Way. This is a short time in stellar evolution, so is practically the same as starting right at the beginning of time. As Jay put it,
“High redshift cluster galaxies appear to be consistent with an old stellar population… they do not appear to be rapidly assembling stellar mass at these epochs.”
We see old stars, but we don’t see the predicted assembly of galaxies via mergers, at least not at the expected time. Rather, it looks like some galaxies were already big very early on.
As someone who has worked mostly on well resolved, relatively nearby galaxies, all this makes me queasy. Jay, and many others, have worked desperately hard to squeeze knowledge from the faint smudges detected by first generation space telescopes. JWST should bring these into much better focus.
Early galaxies in MOND
To go back to the first line of this post, big galaxies at high redshift did not come as a surprise to me. It is what we expect in MOND.
Structure formation is generally considered a great success of LCDM. It is straightforward and robust to calculate on large scales in linear perturbation theory. Individual galaxies, on the other hand, are highly non-linear objects, making them hard to beasts to tame in a model. In MOND, it is the other way around – predicting the behavior of individual galaxies is straightforward – only the observed distribution of mass matters, not all the details of how it came to be that way – but what happens as structure forms in the early universe is highly non-linear.
The non-linearity of MOND makes it hard to work with computationally. It is also crucial to how structure forms. I provide here an outline of how I expect structure formation to proceed in MOND. This page is now old, even ancient in internet time, as the golden age for this work was 15 – 20 years ago, when all the essential predictions were made and I was naive enough to think cosmologists were amenable to reason. Since the horizon of scientific memory is shorter than that, I felt it necessary to review in 2015. That is now itself over the horizon, so with the launch of JWST, it seems appropriate to remind the community yet again that these predictions exist.
This was a remarkable prediction to make in 1998. Galaxies, much less larger structures, were supposed to take much longer to form. It takes time to go from the small initial perturbations that we see in the CMB at z=1000 to large objects like galaxies. Indeed, the it takes at least a few hundred million years simply in free fall time to assemble a galaxy’s worth of mass, a hard limit. Here Sanders was saying that an L* galaxy might assemble as early as half a billion years after the Big Bang.
So how can this happen? Without dark matter to lend a helping hand, structure formation in the very early universe is inhibited by the radiation field. This inhibition is removed around z ~ 200; exactly when being very sensitive to the baryon density. At this point, the baryon perturbations suddenly find themselves deep in the MOND regime, and behave as if there is a huge amount of dark matter. Structure proceeds hierarchically, as it must, but on a highly compressed timescale. To distinguish it from LCDM hierarchical galaxy formation, let’s call it prompt structure formation. In prompt structure formation, we expect
Early reionization (z ~ 20)
Some L* galaxies by z ~ 10
Early emergence of the cosmic web
Massive clusters already at z > 2
Large, empty voids
Large peculiar velocities
A very large homogeneity scale, maybe fractal over 100s of Mpc
There are already indications of all of these things, nearly all of which were predicted in advance of the relevant observations. I could elaborate, but that is beyond the scope of this post. People should read the references* if they’re keen.
*Reading the science papers is mandatory for the pros, who often seem fond of making straw man arguments about what they imagine MOND might do without bothering to check. I once referred some self-styled experts in structure formation to Sanders’s work. They promptly replied “That would mean structures of 1018 M☉!” when what he said was
“The largest objects being virialized now would be clusters of galaxies with masses in excess of 1014 M☉. Superclusters would only now be reaching maximum expansion.”
The exact numbers are very sensitive to cosmological parameters, as Sanders discussed, but I have no idea where the “experts” got 1018, other than just making stuff up. More importantly, Sanders’s statement clearly presaged the observation of very massive clusters at surprisingly high redshift and the discovery of the Laniakea Supercluster.
These are just the early predictions of prompt structure formation, made in the same spirit that enabled me to predict the second peak of the microwave background and the absorption signalobserved by EDGES at cosmic dawn. Since that time, at least two additional schools of thought as to how MOND might impact cosmology have emerged. One of them is the sterile neutrino MOND cosmology suggested by Angus and being actively pursued by the Bonn-Prague research group. Very recently, there is of course the new relativistic theory of Skordis & Złośnik which fits the cosmologists’ holy grail of the power spectrum in both the CMB at z = 1090 and galaxies at z = 0. There should be an active exchange and debate between these approaches, with perhaps new ones emerging.
Instead, we lack critical mass. Most of the community remains entirely obsessed with pursuing the vain chimera of invisible mass. I fear that this will eventually prove to be one of the greatest wastes of brainpower (some of it my own) in the history of science. I can only hope I’m wrong, as many brilliant people seem likely to waste their career running garbage in-garbage out computer simulations or at the bottom of a mine shaft failing to detect what isn’t there.
A beautiful mess
JWST can’t answer all of these questions, but it will help enormously with galaxy formation, which is bound to be messy. It’s not like L* galaxies are going to spring fully formed from the void like Athena from the forehead of Zeus. The early universe must be a chaotic place, with clumps of gas condensing to form the first stars that irradiate the surrounding intergalactic gas with UV photons before detonating as the first supernovae, and the clumps of stars merging to form giant elliptical galaxies while elsewhere gas manages to pool and settle into the large disks of spiral galaxies. When all this happens, how it happens, and how big galaxies get how fast are all to be determined – but now accessible to direct observation thanks to JWST.
It’s going to be a confusing, beautiful mess, in the best possible way – one that promises to test and challenge our predictions and preconceptions about structure formation in the early universe.
An important issue in science is what’s right and what’s wrong. Another is who gets credit for what. The former issue is scientific while the second is social. It matters little to the progress of science who discovers what. It matters a lot to the people who do it. We like to get credit where due.
discovered by me but contested by masses of unbelievers, [who asserted] that there exist no bona fide clusters of stable or stationary clusters of galaxies.
Zwicky, CSCGPEG
Were Zwicky alive today, a case could be made that he deserves the Nobel Prize in physics for the discovery of dark matter. However, Zwicky was not the first or only person to infer the existence of dark matter early on. Jan Oort was concerned that dark mass was necessary to explain the accelerations of stars perpendicular to the plane of the Milky Way as early as 1932. Where Zwicky’s discrepancy was huge, over a factor of 100, Oort’s was a more modest factor of 2. Oort was taken seriously at the time while Zwicky was largely ignored.
The reasons for this difference in response are many and varied. I wasn’t around at the time, so I will refrain from speculating too much. But in many ways, this divide reflects the difference in cultures between physics and astronomy. Oort was thoroughly empirical and immaculately detailed in his observational work and conservative in its interpretation, deeply impressing his fellow astronomers. Zwicky was an outsider and self-described lone wolf, and may have come across as a wild-eyed crackpot. That he had good reason for that didn’t alter the perception. That he is now posthumously recognized as having been basically correct does nothing to aid him personally, only our memory of him.
Nowadays, nearly every physicist I hear talk about the subject credits Zwicky with the discovery of dark matter. When I mention Oort, most have never heard of him, and they rarely seem prepared to share the credit. This is how history gets rewritten, by oversimplification and omission: Oort goes unmentioned in the education of physicists, the omission gets promulgated by those who never heard of him, then it becomes fact since an omission so glaring cannot possibly be correct. I’m doing that myself here by omitting mention of Opik and perhaps others I haven’t heard of myself.
Zwicky got that treatment in real time, leading to some of the best published rants in all of science. I’ll let him speak for himself, quoting from the CSCGPEG. One of his great resentments was his exclusion from premiere observational facilities:
I myself was allowed the use of the 100-inch telescope only in 1948, after I was fifty years of age, and of the 200-inch telescope on Palomar Mountain only after I was 54 years old, although I had built and successfully operated the 18-inch Schmidt telescope in 1936, and had been professor of physics and of astrophysics at the California Institute of Technology since 1927 and 1942 respectively.
Zwicky, in the introduction to the CSCGPEG
For reference, I have observed many hundreds of nights at various observatories. Only a handful of those nights have been in my fifties. Observing is mostly a young person’s occupation.
I do not know why Zwicky was excluded. Perhaps there is a book on the subject; there should be. Maybe it was personal, as he clearly suspects. Applying for telescope time can be highly competitive, even within one’s own institution, which hardly matters if it crossed departmental lines. Perhaps his proposals lacked grounding in the expectations of the field, or some intangible quality that made them less persuasive than those of his colleagues. Maybe he simply didn’t share their scientific language, a perpetual problem I see at the interface between physics and astronomy. Perhaps all these things contributed.
More amusing if inappropriate are his ad hominem attacks on individuals:
a shining example of a most deluded individual we need only quote the high pope of American Astronomy, one Henry Norris Russell…
Zwicky, CSCGPEG
or his more generalized condemnation of the entire field:
Today’s sycophants and plain thieves seem to be free, in American Astronomy in particular, to appropriate discoveries and inventions made by lone wolves and non-conformists, for whom there is never any appeal to the hierarchies and for whom even the public Press is closed, because of censoring committees within the scientific institutions.
Zwicky, CSCGPEG
or indeed, of human nature:
we note that again and again scientists and technical specialists arrive at stagnation points where they think they know it all.
Zwicky, CSCGPEG, emphasis his.
He’s not wrong.
I have heard Zwicky described as a “spherical bastard”: a bastard viewed from any angle. You can see why from these quotes. But you can also see why he might have felt this way. The CSCGPEG was published about 35 years after his pioneering work on clusters of galaxies. That’s a career-lifetime lacking recognition for what would now be consider Nobel prize worthy work. Dark matter would come to prominence in the following decade, by which time he was dead.
I have also heard that “spherical bastard” was a phrase invented by Zwicky to apply to others. I don’t know who was the bigger bastard, and I am reluctant to attribute his lack of popularity in his own day to his personality. The testimony I am aware of is mostly from those who disagreed with him, and may themselves have been spherical bastards. Indeed, I strongly suspect those who sing his praises most loudly now would have been among his greatest detractors had they been contemporaries.
I know from my own experience that people are lousy at distinguishing between a scientific hypothesis that they don’t like and the person who advocates it. Often they are willing and eager to attribute a difference in scientific judgement to a failure of character: “He disagrees with me, therefore he is a bastard.” Trash talk by mediocre wannabes is common, and slander works wonders to run down a reputation. I imagine Zwicky was a victim of this human failing.
Of course, the correctness of a scientific hypothesis has nothing to do with how likeable its proponents might be. Indeed, a true scientist has an obligation to speak the facts, even if they are unpopular, as Zwicky reminded us with a quote of his own in the preface to the CSCGPEG:
The more things change, the more they stay the same.
A surprising and ultimately career-altering result that I encountered while in my first postdoc was that low surface brightness galaxies fell precisely on the Tully-Fisher relation. This surprising result led me to test the limits of the relation in every conceivable way. Are there galaxies that fall off it? How far is it applicable? Often, that has meant pushing the boundaries of known galaxies to ever lower surface brightness, higher gas fraction, and lower mass where galaxies are hard to find because of unavoidable selection biases in galaxy surveys: dim galaxies are hard to see.
I made a summary plot in 2017 to illustrate what we had learned to that point. There is a clear break in the stellar mass Tully-Fisher relation (left panel) that results from neglecting the mass of interstellar gas that becomes increasingly important in lower mass galaxies. The break goes away when you add in the gas mass (right panel). The relation between baryonic mass and rotation speed is continuous down to Leo P, a tiny galaxy just outside the Local Group comparable in mass to a globular cluster and the current record holder for the slowest known rotating galaxy at a mere 15 km/s.
The stellar mass (left) and baryonic (right) Tully-Fisher relations constructed in 2017 from SPARC data and gas rich galaxies. Dark blue points are star dominated galaxies; light blue points are galaxies with more mass in gas than in stars. The data are restricted to galaxies with distance measurements accurate to 20% or better; see McGaugh et al. (2019) for a discussion of the effects of different quality criteria. The line has a slope of 4 and is identical in both panels for comparison.
At the high mass end, galaxies aren’t hard to see, but they do become progressively rare: there is an exponential cut off in the intrinsic numbers of galaxies at the high mass end. So it is interesting to see how far up in mass we can go. Ogle et al. set out to do that, looking over a huge volume to identify a number of very massive galaxies, including what they dubbed “super spirals.” These extend the Tully-Fisher relation to higher masses.
The Tully-Fisher relation extended to very massive “super” spirals (blue points) by Ogle et al. (2019).
Most of the super spirals lie on the top end of the Tully-Fisher relation. However, a half dozen of the most massive cases fall off to the right. Could this be a break in the relation? So it was claimed at the time, but looking at the data, I wasn’t convinced. It looked to me like they were not always getting out to the flat part of the rotation curve, instead measuring the maximum rotation speed.
Bright galaxies tend to have rapidly rising rotation curves that peak early then fall before flattening out. For very bright galaxies – and super spirals are by definition the brightest spirals – the amplitude of the decline can be substantial, several tens of km/s. So if one measures the maximum speed instead of the flat portion of the curve, points will fall to the right of the relation. I decided not to lose any sleep over it, and wait for better data.
Better data have now been provided by Di Teodoro et al. Here is an example from their paper. The morphology of the rotation curve is typical of what we see in massive spiral galaxies. The maximum rotation speed exceeds 300 km/s, but falls to 275 km/s where it flattens out.
A super spiral (left) and its rotation curve (right) from Di Teodoro et al.
Adding the updated data to the plot, we see that the super spirals now fall on the Tully-Fisher relation, with no hint of a break. There are a couple of outliers, but those are trees. The relation is the forest.
The super spiral (red points) stellar mass (left) and baryonic (right) Tully-Fisher relations as updated by Di Teodoro et al. (2021).
That’s a good plot, but it stops at 108 solar masses, so I couldn’t resist adding the super spirals to my plot from 2017. I’ve also included the dwarfs I discussed in the last post. Together, we see that the baryonic Tully-Fisher relation is continuous over six decades in mass – a factor of million from the smallest to the largest galaxies.
The plot from above updated to include the super spirals (red points) at high mass and Local Group dwarfs (gray squares) at low mass. The SPARC data (blue points) have also been updated with new stellar population mass-to-light ratio estimates that make their bulge components a bit more massive, and with scaling relations for metallicity and molecular gas. The super spirals have been treated in the same way, and adjusted to a matching distance scale (H0 = 73 km/s/Mpc). There is some overlap between the super spirals and the most massive galaxies in SPARC; here the data are in excellent agreement. The super spirals extend to higher mass by a factor of two.
The strength of this correlation continues to amaze me. This never happens in extragalactic astronomy, where correlations are typically weak and have lots of intrinsic scatter. The opposite is true here. This must be telling us something.
The obvious thing that this is telling us is MOND. The initial report that super spirals fell off of the Tully-Fisher relation was widely hailed as a disproof of MOND. I’ve seen this movie many times, so I am not surprised that the answer changed in this fashion. It happens over and over again. Even less surprising is that there is no retraction, no self-examination of whether maybe we jumped to the wrong conclusion.
I get it. I couldn’t believe it myself, to start. I struggled for many years to explain the data conventionally in terms of dark matter. Worked my ass off trying to save the paradigm. Try as I might, nothing worked. Since then, many people have claimed to explain what I could not, but so far all I have seen are variations on models that I had already rejected as obviously unworkable. They either make unsubstantiated assumptions, building a tautology, or simply claim more than they demonstrate. As long as you say what people want to hear, you will be held to a very low standard. If you say what they don’t want to hear, what they are conditioned not to believe, then no standard of proof is high enough.
MOND was the only theory to predict the observed behavior a priori. There are no free parameters in the plots above. We measure the mass and the rotation speed. The data fall on the predicted line. Dark matter models did not predict this, and can at best hope to provide a convoluted, retroactive explanation. Why should I be impressed by that?