Britain and America are two nations divided by a common language.
attributed to George Bernard Shaw
Physics and Astronomy are two fields divided by a common interest in how the universe works. There is a considerable amount of overlap between some sub-fields of these subjects, and practically none at all in others. The aims and goals are often in common, but the methods, assumptions, history, and culture are quite distinct. This leads to considerable confusion, as with the English language – scientists with different backgrounds sometimes use the same words to mean rather different things.
A few terms that are commonly used to describe scientists who work on the subjects that I do include astronomer, astrophysicist, and cosmologist. I could be described as any of the these. But I also know lots of scientists to whom these words could be applied, but would mean something rather different.
A common question I get is “What’s the difference between an astronomer and an astrophysicist?” This is easy to answer from my experience as a long-distance commuter. If I get on a plane, and the person next to me is chatty and asks what I do, if I feel like chatting, I am an astronomer. If I don’t, I’m an astrophysicist. The first answer starts a conversation, the second shuts it down.
Flippant as that anecdote is, it is excruciatingly accurate – both for how people react (commuting between Cleveland and Baltimore for a dozen years provided lots of examples), and for what the difference is: practically none. If I try to offer a more accurate definition, then I am sure to fail to provide a complete answer, as I don’t think there is one. But to make the attempt:
Astronomy is the science of observing the sky, encompassing all elements required to do so. That includes practical matters like the technology of telescopes and their instruments across all wavelengths of the electromagnetic spectrum, and theoretical matters that allow us to interpret what we see up there: what’s a star? a nebula? a galaxy? How does the light emitted by these objects get to us? How do we count photons accurately and interpret what they mean?
Astrophysics is the science of how things in the sky work. What makes a star shine? [Nuclear reactions]. What produces a nebular spectrum? [The atomic physics of incredibly low density interstellar plasma.] What makes a spiral galaxy rotate? [Gravity! Gravity plus, well, you know, something. Or, if you read this blog, you know that we don’t really know.] So astrophysics is the physics of the objects astronomy discovers in the sky. This is a rather broad remit, and covers lots of physics.
With this definition, astrophysics is a subset of astronomy – such a large and essential subset that the terms can and often are used interchangeably. These definitions are so intimately intertwined that the distinction is not obvious even for those of us who publish in the learned journals of the American Astronomical Society: the Astronomical Journal (AJ) and the Astrophysical Journal (ApJ). I am often hard-pressed to distinguish between them, but to attempt it in brief, the AJ is where you publish a paper that says “we observed these objects” and the ApJ is where you write “here is a model to explain these objects.” The opportunity for overlap is obvious: a paper that says “observations of these objects test/refute/corroborate this theory” could appear in either. Nevertheless, there was a clearly a sufficient need to establish a separate journal focused on the physics of how things in the sky worked to launch the Astrophysical Journal in 1895 to complement the older Astronomical Journal (dating from 1849).
Cosmology is the study of the entire universe. As a science, it is the subset of astrophysics that encompasses observations that measure the universe as a physical entity: its size, age, expansion rate, and temporal evolution. Examples are sufficiently diverse that practicing scientists who call themselves cosmologists may have rather different ideas about what it encompasses, or whether it even counts as astrophysics in the way defined above.
Indeed, more generally, cosmology is where science, philosophy, and religion collide. People have always asked the big questions – we want to understand the world in which we find ourselves, our place in it, our relation to it, and to its Maker in the religious sense – and we have always made up stories to fill in the gaping void of our ignorance. Stories that become the stuff of myth and legend until they are unquestionable aspects of a misplaced faith that we understand all of this. The science of cosmology is far from immune to myth making, and often times philosophical imperatives have overwhelmed observational facts. The lengthy persistence of SCDM in the absence of any credible evidence that Ωm = 1 is a recent example. Another that comes and goes is the desire for a Phoenix universe – one that expands, recollapses, and is then reborn for another cycle of expansion and contraction that repeats ad infinitum. This is appealing for philosophical reasons – the universe isn’t just some bizarre one-off – but there’s precious little that we know (or perhaps can know) to suggest it is a reality.

Nevertheless, genuine and enormous empirical progress has been made. It is stunning what we know now that we didn’t a century ago. It has only been 90 years since Hubble established that there are galaxies external to the Milky Way. Prior to that, the prevailing cosmology consisted of a single island universe – the Milky Way – that tapered off into an indefinite, empty void. Until Hubble established otherwise, it was widely (though not universally) thought that the spiral nebulae were some kind of gas clouds within the Milky Way. Instead, the universe is filled with millions and billions of galaxies comparable in stature to the Milky Way.
We have sometimes let our progress blind us to the gaping holes that remain in our knowledge. Some of our more imaginative and less grounded colleagues take some of our more fanciful stories to be established fact, which sometimes just means the problem is old and familiar so boring if still unsolved. They race ahead to create new stories about entities like multiverses. To me, multiverses are manifestly metaphysical: great fun for late night bull sessions, but not a legitimate branch of physics.
So cosmology encompasses a lot. It can mean very different things to different people, and not all of it is scientific. I am not about to touch on the world-views of popular religions, all of which have some flavor of cosmology. There is controversy enough about these definitions among practicing scientists.
I started as a physicist. I earned an SB in physics from MIT in 1985, and went on to the physics (not the astrophysics) department of Princeton for grad school. I had elected to study physics because I had a burning curiosity about how the world works. It was not specific to astronomy as defined above. Indeed, astronomy seemed to me at the time to be but one of many curiosities, and not necessarily the main one.
There was no clear department of astronomy at MIT. Some people who practiced astrophysics were in the physics department; others in Earth, Atmospheric, and Planetary Science, still others in Mathematics. At the recommendation of my academic advisor Michael Feld, I wound up doing a senior thesis with George W. Clark, a high energy astrophysicist who mostly worked on cosmic rays and X-ray satellites. There was a large high energy astrophysics group at MIT who studied X-ray sources and the physics that produced them – things like neutron stars, black holes, supernova remnants, and the intracluster medium of clusters of galaxies – celestial objects with sufficiently extreme energies to make X-rays. The X-ray group needed to do optical follow-up (OK, there’s an X-ray source at this location on the sky. What’s there?) so they had joined the MDM Observatory. I had expressed a vague interest in orbital dynamics, and Clark had become interested in the structure of elliptical galaxies, motivated by the elegant orbital structures described by Martin Schwarzschild. The astrophysics group did a lot of work on instrumentation, so we had access to a new-fangled CCD. These made (and continue to make) much more sensitive detectors than photographic plates.
Empowered by this then-new technology, we embarked on a campaign to image elliptical galaxies with the MDM 1.3 m telescope. The initial goal was to search for axial twists as the predicted consequence of triaxial structure – Schwarzschild had shown that elliptical galaxies need not be oblate or prolate, but could have three distinct characteristic lengths along their principal axes. What we noticed instead with the sensitive CCD was a wonder of new features in the low surface brightness outskirts of these galaxies. Most elliptical galaxies just fade smoothly into obscurity, but every fourth or fifth case displayed distinct shells and ripples – features that were otherwise hard to spot that had only recently been highlighted by Malin & Carter.

At the time I was doing this work, I was of course reading up on galaxies in general, and came across Mike Disney’s arguments as to how low surface brightness galaxies could be ubiquitous and yet missed by many surveys. This resonated with my new observing experience. Look hard enough, and you would find something new that had never before been seen. This proved to be true, and remains true to this day.
I went on only two observing runs my senior year. The weather was bad for the first one, clearing only the last night during which I collected all the useful data. The second run came too late to contribute to my thesis. But I was enchanted by the observatory as a remote laboratory, perched in the solitude of the rugged mountains, themselves alone in an empty desert of subtly magnificent beauty. And it got dark at night. You could actually see the stars. More stars than can be imagined by those confined to the light pollution of a city.
It hadn’t occurred to me to apply to an astronomy graduate program. I continued on to Princeton, where I was assigned to work in the atomic physics lab of Will Happer. There I mostly measured the efficiency of various buffer gases in moderating spin exchange between sodium and xenon. This resulted in my first published paper.
In retrospect, this is kinda cool. As an alkali, the atomic structure of sodium is basically that of a noble gas with a spare electron it’s eager to give away in a chemical reaction. Xenon is a noble gas, chemically inert as it already has nicely complete atomic shells; it wants neither to give nor receive electrons from other elements. Put the two together in a vapor, and they can form weak van der Waals molecules in which they share the unwanted valence electron like a hot potato. The nifty thing is that one can spin-polarize the electron by optical pumping with a laser. As it happens, the wave function of the electron has a lot of overlap with the nucleus of the xenon (one of the allowed states has no angular momentum). Thanks to this overlap, the spin polarization imparted to the electron can be transferred to the xenon nucleus. In this way, it is possible to create large amounts of spin-polarized xenon nuclei. This greatly enhances the signal of MRI, and has found an application in medical imaging: a patient can breathe in a chemically inert [SAFE], spin polarized noble gas, making visible all the little passageways of the lungs that are otherwise invisible to an MRI. I contributed very little to making this possible, but it is probably the closest I’ll ever come to doing anything practical.
The same technology could, in principle, be applied to make dark matter detection experiments phenomenally more sensitive to spin-dependent interactions. Giant tanks of xenon have already become one of the leading ways to search for WIMP dark matter, gobbling up a significant fraction of the world supply of this rare noble gas. Spin polarizing the xenon on the scales of tons rather than grams is a considerable engineering challenge.
Now, in that last sentence, I lapsed into a bit of physics arrogance. We understand the process. Making it work is “just” a matter of engineering. In general, there is a lot of hard work involved in that “just,” and a lot of times it is a practical impossibility. That’s probably the case here, as the polarization decays away quickly – much more quickly than one could purify and pump tons of the stuff into a vat maintained at a temperature near absolute zero.
At the time, I did not appreciate the meaning of what I was doing. I did not like working in Happer’s lab. The windowless confines kept dark but for the sickly orange glow of a sodium D laser was not a positive environment to be in day after day after day. More importantly, the science did not call to my heart. I began to dream of a remote lab on a scenic mountain top.
I also found the culture in the physics department at Princeton to be toxic. Nothing mattered but to be smarter than the next guy (and it was practically all guys). There was no agreed measure for this, and for the most part people weren’t so brazen as to compare test scores. So the thing to do was Be Arrogant. Everybody walked around like they were too frickin’ smart to be bothered to talk to anyone else, or even see them under their upturned noses. It was weird – everybody there was smart, but no human could possible be as smart as these people thought they were. Well, not everybody, of course – Jim Peebles is impossibly intelligent, sane, and even nice (perhaps he is an alien, or at least a Canadian) – but for most of Princeton arrogance was a defining characteristic that seeped unpleasantly into every interaction.
It was, in considerable part, arrogance that drove me away from physics. I was appalled by it. One of the best displays was put on by David Gross in a colloquium that marked the take-over of theoretical physics by string theory. The dude was talking confidently in bold positivist terms about predictions that were twenty orders of magnitude in energy beyond any conceivable experimental test. That, to me, wasn’t physics.
More than thirty years on, I can take cold comfort that my youthful intuition was correct. String theory has conspicuously failed to provide the vaunted “theory of everything” that was promised. Instead, we have vague “landscapes” of 10500 possible theories. Just want one. 10500 is not progress. It’s getting hopelessly lost. That’s what happens when brilliant ideologues are encouraged to wander about in their hyperactive imaginations without experimental guidance. You don’t get physics, you get metaphysics. If you think that sounds harsh, note that Gross himself takes exactly this issue with multiverses, saying the notion “smells of angels” and worrying that a generation of physicists will be misled down a garden path – exactly the way he misled a generation with string theory.
So I left Princeton, and switched to a field where progress could be made. I chose to go to the University of Michigan, because I knew it had access to the MDM telescopes (one of the M’s stood for Michigan, the other MIT, with the D for Dartmouth) and because I was getting married. My wife is an historian, and we needed a university that was good in both our fields.
When I got to Michigan, I was ready to do research. I wanted to do more on shell galaxies, and low surface brightness galaxies in general. I had had enough coursework, I reckoned; I was ready to DO science. So I was somewhat taken aback that they wanted me to do two more years of graduate coursework in astronomy.
Some of the physics arrogance had inevitably been incorporated into my outlook. To a physicist, all other fields are trivial. They are just particular realizations of some subset of physics. Chemistry is just applied atomic physics. Biology barely even counts as science, and those parts that do could be derived from physics, in principle. As mere subsets of physics, any other field can and will be picked up trivially.
After two years of graduate coursework in astronomy, I had the epiphany that the field was not trivial. There were excellent reasons, both practical and historical, why it was a separate field. I had been wrong to presume otherwise.
Modern physicists are not afflicted by this epiphany. That bad attitude I was guilty of persists and is remarkably widespread. I am frequently confronted by young physicists eager to mansplain my own field to me, who casually assume that I am ignorant of subjects that I wrote papers on before they started reading the literature, and who equate a disagreement with their interpretation on any subject with ignorance on my part. This is one place the fields diverge enormously. In physics, if it appears in a textbook, it must be true. In astronomy, we recognize that we’ve been wrong about the universe so many times, we’ve learned to be tolerant of interpretations that initially sound absurd. Today’s absurdity may be tomorrow’s obvious fact. Physicists don’t share this history, and often fail to distinguish interpretation from fact, much less cope with the possibility that a single set of facts may admit multiple interpretations.
Cosmology has often been a leader in being wrong, and consequently enjoyed a shady reputation in both physics and astronomy for much of the 20th century. When I started on the faculty at the University of Maryland in 1998, there was no graduate course in the subject. This seemed to me to be an obvious gap to fill, so I developed one. Some of the senior astronomy faculty expressed concern as to whether this could be a rigorous 3 credit graduate course, and sent a neutral representative to discuss the issue with me. He was satisfied. As would be any cosmologist – I was teaching LCDM before most other cosmologists had admitted it was a thing.
At that time, 1998, my wife was also a new faculty member at John Carroll University. They held a welcome picnic, which I attended as the spouse. So I strike up a conversation with another random spouse who is also standing around looking similarly out of place. Ask him what he does. “I’m a physicist.” Ah! common ground – what do you work on? “Cosmology and dark matter.” I was flabbergasted. How did I not know this person? It was Glenn Starkman, and this was my first indication that sometime in the preceding decade, cosmology had become an acceptable field in physics and not a suspect curiosity best left to woolly-minded astronomers.
This was my first clue that there were two entirely separate groups of professional scientists who self-identified as cosmologists. One from the astronomy tradition, one from physics. These groups use the same words to mean the same things – sometimes. There is a common language. But like British English and American English, sometimes different things are meant by the same words.
“Dark matter” is a good example. When I say dark matter, I mean the vast diversity of observational evidence for a discrepancy between measurable probes of gravity (orbital speeds, gravitational lensing, equilibrium hydrostatic temperatures, etc.) and what is predicted by the gravity of the observed baryonic material – the stars and gas we can see. When a physicist says “dark matter,” he seems usually to mean the vast array of theoretical hypotheses for what new particle the dark matter might be.
To give a recent example, a colleague who is a world-reknowned expert on dark matter, and an observational astronomer in a physics department dominated by particle cosmologists, noted that their chairperson had advocated a particular hiring plan because “we have no one who works on dark matter.” This came across as incredibly disrespectful, which it is. But it is also simply clueless. It took some talking to work through, but what we think he meant was that they had no one who worked on laboratory experiments to detect dark matter. That’s a valid thing to do, which astronomers don’t deny. But it is a severely limited way to think about it.
To date, the evidence for dark matter to date is 100% astronomical in nature. That’s all of it. Despite enormous effort and progress, laboratory experiments provide 0%. Zero point zero zero zero. And before some fool points to the cosmic microwave background, that is not a laboratory experiment. It is astronomy as defined above: information gleaned from observation of the sky. That it is done with photons from the mm and microwave part of the spectrum instead of the optical part of the spectrum doesn’t make it fundamentally different: it is still an observation of the sky.
And yet, apparently the observational work that my colleague did was unappreciated by his own department head, who I know to fancy himself an expert on the subject. Yet existence of a complementary expert in his own department didn’t ever register him. Even though, as chair, he would be responsible for reviewing the contributions of the faculty in his department on an annual basis.
To many physicists we astronomers are simply invisible. What could we possibly teach them about cosmology or dark matter? That we’ve been doing it for a lot longer is irrelevant. Only what they [re]invent themselves is valid, because astronomy is a subservient subfield populated by people who weren’t smart enough to become particle physicists. Because particle physicists are the smartest people in the world. Just ask one. He’ll tell you.
To give just one personal example of many: a few years ago, after I had published a paper in the premiere physics journal, I had a particle physics colleague ask, in apparent sincerity, “Are you an astrophysicist?” I managed to refrain from shouting YES YOU CLUELESS DUNCE! Only been doing astrophysics for my entire career!
As near as I can work out, his erroneous definition of astrophysicist involved having a Ph.D. in physics. That’s a good basis to start learning astrophysics, but it doesn’t actually qualify. Kris Davidson noted a similar sociology among his particle physics colleagues: “They simply declare themselves to be astrophysicsts.” Well, I can tell you – having made that same mistake personally – it ain’t that simple. I’m pleased that so many physicists are finally figuring out what I did in the 1980s, and welcome their interest in astrophysics and cosmology. But they need to actually learn the subject, just not assume they’ll pick it up in a snap without actually doing so.